Modulating influence of wistar rats’ oxygen status on behavioural manifestations of nitrogen narcosis: experimental study

Cover Page

Cite item

Full Text

Abstract

OBJECTIVE of the study is to determine the influence of changing oxygen status in the animal’s body on nitrogen toxic effect under pressure.
MATERIALS AND METHODS: A hyperbaric chamber was used to create normothermic effect of hyperbaric nitrogen up to 4,1 MPa amid changing oxygen concentration from 0,03 to 0,004 MPa, recording rats’ motor activity and posture reflexes.
RESULTS: Oxygen decrease in the respiratory gas medium from 0,021 to 0,004 MPa due to nitrogen compression raised biphasic sensitivity of Wistar rates to nitrogen toxic effect. Yet in the sites of non-compensable hypoxia sensitivity to hyperbaric nitrogen effect increased 4,5 times. Preliminary exposure of pregnant rats in hypoxia led to decrease in the offspring’s sensitivity to toxic effect of hyperbaric nitrogen by 35% on average after reaching puberty.
DISCUSSION: The obtained data allows to regard toxic effect of hyperbaric nitrogen as oxygen-dependent process. While hypoxia along with hyperbaric nitrogen effect enhances nitrogen narcosis, hypoxia, prior to nitrogen compression, reduces intoxication of this gas.

About the authors

A. N. Vjotosh

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences;
Lesgaft National State University of Physical Education, Sport and Health

Email: vjotnn@yahoo.com
ORCID iD: 0000-0003-3854-0320
SPIN-code: 2436-5282

Alexander N. Vjotosh – Dr. of Sci. (Biol.) 

194223, Saint Petersburg, Moris Torez Ave., 44

Russian Federation

O. S. Alekseeva

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Author for correspondence.
Email: osa72@inbox.ru
ORCID iD: 0000-0001-5688-347X
SPIN-code: 4281-3091

Olga S. Alekseeva – Cand. of Sci. (Biol.), Leading researcher of the Laboratory “Cellular Mechanisms of Blood Homeostasis” 

194223, Saint Petersburg, 44 Moris Torez Ave., 44

Russian Federation

References

  1. Вётош А.Н. Биологическое действие азота. СПб.: 2003. 232 с.
  2. Bove A.A. Diving medicine. American J. Respir. Crit. Care Medicine. 2014, Vol.189, № 12, pp. 1479–1486. doi: 10.1164/rccm.201309-1662Cl.
  3. Edge C.J., Wilmshurst P.T. The pathophysiologies of diving diseases. British J. of Anaesthesia, 2021, Vol. 21, № 9, pp. 343–348. doi: 10.1016/j.bjae.2021.05.003.
  4. Дубровская Н.М., Журавин И.А. Онтогенетические особенности поведения крыс, перенесших гипоксию на 14-е и 18-е сутки эмбриогенеза // Журнал высшей нервной деятельности им. И.П. Павлова. 2009. Т. 58, № 5. С. 616–625
  5. Teppema L., Dahan A. The Ventilatory Response to Hypoxia in Mammals: Mechanisms, Measurement, and Analysis. Physiological Reviews, 2010, Vol. 90, No. 2, pp. 675–754. doi: 10.1152/physrev.00012.2009.
  6. Dean J.B., Mulkey D.K., Garcia A.J. III, et al. Neuronal sensitivity to hyperoxia, hypercapnia, and inert gases at hyperbaric pressures. J. Applied Physiology, 2003, Vol. 95, pp. 883–909. doi: 10.1152/japplphysiol.00920.2002.
  7. Vrijdag X.C., van Waart H., Sames C., et al. Does hyperbaric oxygen cause narcosis or hyperexcitability? A quantitative EEG analysis. Physiological Reports, 2022, Vol. 12, № 10, e15386. doi: 10.14814/phy2.15386.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies