ТАМЕРОН (АМИНОДИГИРОФТАЛАЗИНДИОН НАТРИЯ) КАК ПОТЕНЦИАЛЬНЫЙ КОМПЛЕКСНЫЙ ПРЕПАРАТ ДЛЯ ТЕРАПИИ КОРОНАВИРУСНОЙ ИНФЕКЦИИ COVID-19

Обложка

Цитировать

Полный текст

Аннотация

Коронавирусная инфекция вызвала глобальную пандемию с высоким уровнем смертности среди населения разных стран. Препараты для неспецифической иммунотерапии этой инфекции на основе аминодигидрофталазиндиона натрия (в частности, Тамерон) для этой цели не рассматривались. Этот препарат обладает иммуномодуляторными свойствами, а его применение не сопровождается побочными эффектами. Тамерон может стать потенциальным комплексным препаратом для лечения коронавирусной инфекции COVID-19 и его применение особенно актуально в условиях замкнутых помещений на кораблях и судах военного и гражданского флотов.

Об авторах

А. М. Ермаков

Институт инженерной физики; Институт теоретической и экспериментальной биофизики РАН

Автор, ответственный за переписку.
Email: ao_ermakovy@rambler.ru
ORCID iD: 0000-0001-7810-0675

Ермаков Артем Михайлович — кандидат биологических наук, заместитель начальника отдела контроля качества фармацевтической службы качества, старший научный сотрудник  

142210, Московская обл., г. Серпухов, Б. Ударный пер., д. 1а

142290, Московская обл., г. Пущино, Институтская ул., д. 3

SPIN 2696–1971

Россия

Е. А. Царькова

Институт инженерной физики

Email: info@iifmail.ru

Царькова Елена Александровна — помощник Президента Межрегионального общественного учреждения

142210, Московская обл., г. Серпухов, Б. Ударный пер., д. 1а

Россия

О. Н. Ермакова

Институт теоретической и экспериментальной биофизики РАН

Email: beoluchi@yandex.ru
ORCID iD: 0000-0001-5830-7441

Ермакова Ольга Николаевна — кандидат биологических наук, научный сотрудник 

142290, Московская обл., г. Пущино, ул. Институтская, д. 3

SPIN 9668–9635

Россия

А. Н. Царьков

Институт инженерной физики

Email: info@iifmail.ru

Царьков Алексей Николаевич — заслуженный деятель науки РФ, доктор технических наук, профессор, Президент — Председатель Правления Межрегионального общественного учреждения

142210, Московская обл., г. Серпухов, Большой Ударный пер., д. 1а

Россия

Список литературы

  1. Omer S.B., Malani P., Del Rio C. The COVID-19 pandemic in the US: a clinical Update // JAMA. 2020. Vol. 323, No. 18. Р. 1767–1768. 10.1001/jama.2020.5788.
  2. Zhou P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W., Si H.R., Zhu Y., Li B., Huang C.L., Chen H.D., Chen J., Luo Y., Guo H., Jiang R.D., Liu M.Q., Chen Y., Shen X.R., Wang X., Zheng X.S., Zhao K., Chen Q.J., Deng F., Liu L.L., Yan B., Zhan F.X., Wang Y.Y., Xiao G.F., Shi Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin // Nature. 2020. Vol. 579, No. 7798. Р. 270–273. doi: 10.1038/s41586-020-2012-7.
  3. Yang X., Yu Y., Xu J., Shu H., Xia J., Liu H., Wu Y., Zhang L., Yu Z., Fang M., Yu T., Wang Y., Pan S., Zou X., Yuan S., Shang Y. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study // Lancet Respir. Med. 2020. Vol. 8, No. 5. Р. 475–481. doi: 10.1016/S2213- 2600(20)30079-5.
  4. Li X., Geng M., Peng Y., Meng L., Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. Version 2 // J. Pharm. Anal. 2020. Vol. 10, No. 2. Р. 102–108. doi: 10.1016/j.jpha.2020.03.001.
  5. Ni W., Yang X., Yang D., Bao J., Li R., Xiao Y., Hou C., Wang H., Liu J., Yang D., Xu Y., Cao Z., Gao Z. Role of angiotensinconverting enzyme 2 (ACE2) in COVID-19 // Crit Care. 2020. Vol. 24, No. 1. Р. 422. doi: 10.1186/s13054-020-03120-0.
  6. Li W., Moore M.J., Vasilieva N., Sui J., Wong S.K., Berne M.A., Somasundaran M., Sullivan J.L., Luzuriaga K., Greenough T.C., Choe H., Farzan M. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus // Nature. 2003. Vol. 426, No. 6965. Р. 450–454. doi: 10.1038/nature02145.
  7. Kuba K., Imai Y., Rao S., Gao H., Guo F., Guan B., Huan Y., Yang P., Zhang Y., Deng W., Bao L., Zhang B., Liu G., Wang Z., Chappell M., Liu Y., Zheng D., Leibbrandt A., Wada T., Slutsky A.S., Liu D., Qin C., Jiang C., Penninger J.M. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury // Nat. Med. 2005. Vol. 11, No. 8. Р. 875–879. doi: 10.1038/nm1267.
  8. Xu H., Zhong L., Deng J., Peng J., Dan H., Zeng X., Li T., Chen Q. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa // Int. J. Oral. Sci. 2020. Vol. 12, No. 1. Р. 8. doi: 10.1038/s41368-020-0074-x.
  9. Donoghue M., Hsieh F., Baronas E., Godbout K., Gosselin M., Stagliano N., Donovan M., Woolf B., Robison K., Jeyaseelan R., Breitbart R.E., Acton S. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9 // Circ. Res. 2000. Vol. 87, No. 5. Р. E1–9. doi: 10.1161/01.res.87.5.e1
  10. Imai Y., Kuba K., Rao S., Huan Y., Guo F., Guan B., Yang P., Sarao R., Wada T., Leong-Poi H., Crackower M.A., Fukamizu A., Hui C.C., Hein L., Uhlig S., Slutsky A.S., Jiang C., Penninger J.M. Angiotensin-converting enzyme 2 protects from severe acute lung failure // Nature. 2005. Vol. 436, No. 7047. Р. 112–116. doi: 10.1038/nature03712.
  11. Jia H.P., Look D.C., Shi L., Hickey M., Pewe L., Netland J., Farzan M., Wohlford-Lenane C., Perlman S., McCray P.B.Jr. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia // J. Virol. 2005. Vol. 79, No. 23. Р. 14614–14621. doi: 10.1128/JVI.79.23.14614-14621.2005. PMID: 16282461; PMCID: PMC1287568.
  12. Chu H., Chan C.M., Zhang X., Wang Y., Yuan S., Zhou J., Au-Yeung R.K., Sze K.H., Yang D., Shuai H., Hou Y., Li C., Zhao X., Poon V.K., Leung S.P., Yeung M.L., Yan J., Lu G., Jin D.Y., Gao G.F., Chan J.F., Yuen K.Y. Middle East respiratory syndrome coronavirus and bat coronavirus HKU9 both can utilize GRP78 for attachment onto host cells // J. Biol. Chem. 2018. Vol. 293, No. 30. Р. 11709–11726. doi: 10.1074/jbc.RA118.001897.
  13. Prompetchara E., Ketloy C., Palaga T. Immune responses in COVID-19 and potential vaccines: lessons learned from SARS and MERS epidemic // Asian Pac. J. Allergy Immunol. 2020. Vol. 38. Р. 1–9.
  14. Grasselli G., Zangrillo A., Zanella A. et al. Baseline Characteristics and outcomes of 1591 patients infected With SARSCoV-2 Admitted to ICUs of the Lombardy Region, Italy // JAMA. 2020. Vol. 323, No. 16. Р. 1574–1581. doi: 10.1001/jama.2020.5394
  15. Chen Y., Li L. SARS-CoV-2: virus dynamics and host response // Lancet Infect Dis. 2020. Vol. 20, No. 5. Р. 515–516. doi: 10.1016/S1473-3099(20)30235-8.
  16. Rokni M., Ghasemi V., Tavakoli Z. Immune responses and pathogenesis of SARS-CoV-2 during an outbreak in Iran: comparison with SARS and MERS // Rev. Med. Virol. 2020. Vol. 30, No. 3. Р. e2107. doi: 10.1002/rmv.2107.
  17. Conti P., Ronconi G., Caraffa A., Gallenga C.E., Ross R., Frydas I., Kritas S.K. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): anti-inflammatory strategies // J. Biol. Regul. Homeost Agents. 2020. Vol. 34, No. 2. Р. 1. doi: 10.23812/CONTI-E.
  18. Grifoni A., Sidney J., Zhang Y., Scheuermann R.H., Peters B., Sette A. A Sequence Homology and Bioinformatic Approach Can Predict Candidate Targets for Immune Responses to SARS-CoV-2 // Cell Host Microbe. 2020. Vol. 27, No. 4. Р. 671–680. e2. doi: 10.1016/j.chom.2020.03.002.
  19. Ou X., Liu Y., Lei X., Li P., Mi D., Ren L., Guo L., Guo R., Chen T., Hu J., Xiang Z., Mu Z., Chen X., Chen J., Hu K., Jin Q., Wang J., Qian Z. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune crossreactivity with SARS-CoV. Version 2 // Nat. Commun. 2020. Vol. 11, No. 1. Р. 1620. doi: 10.1038/s41467-020-15562-9.
  20. Shiraki K., Daikoku T. Favipiravir, an anti-influenza drug against life threatening RNA virus infections // Pharmacol. Ther. 2020. Vol. 209. Р. 107512.
  21. Al-Tawfiq J.A., Al-Homoud A.H.,Memish Z.A. Remdesivir as a possible therapeutic option for the COVID-19 // Travel Med. Infect. Dis. 2020. Р. 101615.
  22. Zhou D., Dai S.M., Tong Q. COVID-19: a recommendation to examine the effect of hydroxychloroquine in preventing infection and progression. The Journal of antimicrobial chemotherapy // J. Antimicrob. Chemother. 2020. dkaa114. https://doi.org/10.1093/jac/dkaa114.
  23. Devaux C.A., Rolain J.M., Colson P., Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? // Int. J. Antimicrob. Agents. 2020. Vol. 55. Р. 105938.
  24. Kalil A.C. Treating COVID-19-off-label drug use, compassionate use, and randomized clinical trials during pandemics // JAMA. 2020. Vol. 323. Р. 1897. https://doi.org/10.1001/jama.2020.4742.
  25. Yazici Y., Curtis J.R., Ince A., Baraf H., Malamet R.L., Teng L.L., Kavanaugh A. Efficacy of tocilizumab in patients with moderate to severe active rheumatoid arthritis and a previous inadequate response to disease-modifying antirheumatic drugs: The ROSE study // Ann. Rheum. Dis. 2012. Vol. 71. Р. 198–205. doi: 10.1136/ard.2010.148700.
  26. Luo P., Liu Y., Qiu L., Liu X., Liu D., Li J. Tocilizumab treatment in COVID-19: a single center experience // J. Med. Virol. 2020. Vol. 92. Р. 814–818. https://doi.org/10.1002/jmv.25801.
  27. Hegerova L., Gooley T., Sweerus K.A., Maree C.L., Bailey N., Bailey M., Dunleavy V., Patel K., Alcorn K., Haley N.R. et al. Use of Convalescent Plasma in Hospitalized Patients with Covid-19 — Case Series // Blood. 2020. doi: blood.2020006964.
  28. Cai Q., Yang M., Liu D., Chen J., Shu D., Xia J., Liao X., Gu Y., Cai Q., Yang Y. et al. Experimental Treatment with Favipiravir for COVID-19: An Open-Label Control Study // Engineering (Beijing). 2020. doi: 10.1016/j.eng.2020.03.007.
  29. Патент № 2673452 Российская Федерация, МПК А61К 31/502 (2006.01), С07D 237/32 (2006.01). Способ получения активной фармацевтической субстанции, представляющей собой аминодигидрофталазиндион натрия: 2017129096: заявл. 15.08.2017: опубл. 27.11.2018 / Царьков А.Н., Смуров С.В., Презент М.А., Вольский В.С., Седова И.В., Краснова Ю.В., Чистякова А.В. 12 с.
  30. Tzar’kov A.N., Tzar’kova E.A. Innovative drug «TAMERON». Izvestiya Instituta inzhenernoy phiziki, 2019, No. 4 (54), рр. 111–115
  31. Царьков А.Н., Краснова Ю.В., Царькова Е.А. Технология производства иммунотропного инновационного препарата «ТАМЕРОН» // Известия Института инженерной физики. 2020. № 2 (56). С. 82–86.
  32. Маевский Е.И., Царьков А.Н., Ермаков А.М., Богданова Л.А., Царькова Е.А. Иммунотропные препараты в разработках МОУ «Институт инженерной физики» // Труды Четвертой научно-практической школы-конференции «Аллергология и клиническая иммунология». 2018.
  33. Направленная иммунокорекция: проблемы и перспективы / под ред. М.Т. Абидова (Приложение 3 к журналу «Бюллетень экспериментальной биологии и медицины» за 2000 г.). М.: Изд-во РАМН, 2000. 104 с.
  34. Маевский Е.И., Царьков А.Н., Царькова Е.А. Влияние препаратов люминола натрия и сукцината аммония на иммунную систему // Труды Пятой научно-практической школы-конференции «Аллергология и клиническая иммунология». 2019.
  35. Khomich O.A., Kochetkov S.N., Bartosch, B., Ivanov A.V. Redox biology of respiratory viral infections // Viruses. 2018. Vol. 10. Р. 392.
  36. Checconi P., De Angelis M., Marcocci M.E., Fraternale A., Magnani, M., Palamara A.T., Nencioni L. Redox-Modulating Agents in the Treatment of Viral Infections // Int. J. Mol. Sci. 2020. Vol. 21. Р. 4084.
  37. Scofield V.L., Yan M., Kuang X., Kim S.J., Wong P.K. The drug monosodium luminol (GVT) preserves crypt-villus epithelial organization and allows survival of intestinal T cells in mice infected with the ts1 retrovirus // Immunol. Lett. 2009. Vol. 122, No. 2. Р. 150–158. doi: 10.1016/j.imlet.2008.12.012.
  38. Lau A., Villeneuve N.F., Sun Z., Wong P.K., Zhang D.D. Dual roles of Nrf2 in cancer // Pharmacol. Res. 2008. Vol. 58, No. 5–6. Р. 262–270. doi: 10.1016/j.phrs.2008.09.003.
  39. Dhakshinamoorthy S., Long D.J. 2nd, Jaiswal A.K. Antioxidant regulation of genes encoding enzymes that detoxify xenobiotics and carcinogens // Curr. Top Cell Regul. 2000. Vol. 36. Р. 201–216. doi: 10.1016/s0070-2137(01)80009-1.
  40. Ghosh N., Ghosh R., Mandal S.C. Antioxidant protection: A promising therapeutic intervention in neurodegenerative disease // Free Radic Res. 2011. Vol. 45, No. 8. Р. 888–905. doi: 10.3109/10715762.2011.574290.
  41. Qiang W., Cahill J.M., Liu J., Kuang X., Liu N., Scofield V.L., Voorhees J.R., Reid A.J., Yan M., Lynn W.S., Wong P.K. Activation of transcription factor Nrf-2 and its downstream targets in response to moloney murine leukemia virus ts1-induced thiol depletion and oxidative stress in astrocytes // J. Virol. 2004. Vol. 78(21. Р. 11926–11938. doi: 10.1128/JVI.78.21.11926-11938.2004.
  42. Qiang W., Kuang X., Liu J., Liu N., Scofield V.L., Reid A.J., Jiang Y., Stoica G., Lynn W.S., Wong P.K. Astrocytes survive chronic infection and cytopathic effects of the ts1 mutant of the retrovirus Moloney murine leukemia virus by upregulation of antioxidant defenses // J. Virol. 2006. Vol. 80, No. 7. Р. 3273–3284. doi: 10.1128/JVI.80.7.3273-3284.2006.
  43. Reddy P.V., Lungu G., Kuang X., Stoica G., Wong P.K. Neuroprotective effects of the drug GVT (monosodium luminol) are mediated by the stabilization of Nrf2 in astrocytes // Neurochem Int. 2010. Vol. 56, No. 6–7. Р. 780–788. doi: 10.1016/j.neuint.2010.02.017.
  44. Shetty A.K., Attaluri S., Kodali M., Shuai B., Shetty G.A., Upadhya D., Hattiangady B., Madhu L.N., Upadhya R., Bates A., Rao X. Monosodium luminol reinstates redox homeostasis, improves cognition, mood and neurogenesis, and alleviates neuro- and systemic inflammation in a model of Gulf War Illness // Redox Biol. 2020. Vol. 28. Р. 101389. doi: 10.1016/j.redox.2019.101389.
  45. Hassan S.M., Jawad M.J., Ahjel S.W., Singh R.B., Singh J., Awad S.M., Hadi N.R. The Nrf2 Activator (DMF) and Covid19: Is there a Possible Role? // Med. Arch. 2020. Vol. 74, No. 2. Р. 134–138. doi: 10.5455/medarh.2020.74.134-138.
  46. Azim D., Nasim S., Kumar S., Hussain A., Patel S. Neurological Consequences of 2019-nCoV Infection: A Comprehensive Literature Review // Cureus. 2020. Vol. 12, No. 6. Р. e8790. doi: 10.7759/cureus.8790. 47. Hadjadj J. et al. Impaired type I interferon activity and exacerbated inflammatory responses in severe COVID-19 patients // Preprint at. medRxiv. 2020. doi: 10.1101/2020.04.19.20068015.
  47. Wang X., Xu W., Hu G., Xia S., Sun Z., Liu Z., Xie Y., Zhang R., Jiang S., Lu L. SARS-CoV-2 infects T lymphocytes through its spike protein-mediated membrane fusion // Cell Mol. Immunol. 2020. Р. 1–3. doi: 10.1038/s41423-020-0424-9.
  48. Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y., Qiu Y., Wang J., Liu Y., Wei Y., Xia J., Yu T., Zhang X., Zhang L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study // Lancet. 2020. Vol. 395, No. 10223. Р. 507–513. doi: 10.1016/S0140-6736(20)30211-7.
  49. Forrester S.J., Kikuchi D.S., Hernandes M.S., Xu Q., Griendling K.K. Reactive Oxygen Species in Metabolic and Inflammatory Signaling // Circ. Res. 2018. Vol. 122, No. 6. Р. 877–902. doi: 10.1161/CIRCRESAHA.117.311401.
  50. Merad M., Martin J.C. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages // Nat. Rev. Immunol. 2020. Р. 1–8. doi: 10.1038/s41577-020-0331-4.
  51. Von Brühl M.L., Stark K., Steinhart A., Chandraratne S., Konrad I., Lorenz M., Khandoga A., Tirniceriu A., Coletti R., Köllnberger M., Byrne R.A., Laitinen I., Walch A., Brill A., Pfeiler S., Manukyan D., Braun S., Lange P., Riegger J., Ware J., Eckart A., Haidari S., Rudelius M., Schulz C., Echtler K., Brinkmann V., Schwaiger M., Preissner K.T., Wagner D.D., Mackman N., Engelmann B., Massberg S. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo // J. Exp. Med. 2012. Vol. 209, No. 4. Р. 819–835. doi: 10.1084/jem.20112322.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© ,


 


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах