THE CURRENT STATE OF THE PROBLEM OF FEMALE FERTILITY IN CANCER AND A DECREASE IN OVARIAN RESERVE

Cover Page

Cite item

Full Text

Abstract

Analysis of the current state of the problem of preserving female fertility in cancer and reducing ovarian reserve revealed that there are currently several proven methods for young women — cryopreservation of embryos, oocytes and ovarian tissue, each of which has its own advantages and disadvantages. The promising technologies are cryopreservation of oocytes after in vitro maturation, as well as cryopreservation of embryos derived from oocytes, which were matured in vitro. In vitro maturation of immature oocytes aspirated from primordial follicles allows for the production of many mature oocytes without ovarian stimulation, which makes this technology a potentially effective strategy for preserving fertility. However, the best results can be achieved by combining several methods that must be determined individually in each specific case. Although there was no negative effect of cancer on the results of treatment of oncological obesity in the next generation, long-term observations and studies with a large number of patients are needed. The goal of helping with oncological infertility is not only the preservation of fertility, but the creation of a nationwide system of care for oncological diseases in which interdisciplinary coordination will allow all cancer patients to receive multidisciplinary assistance. The organization and standardization of the treatment of oncological symptoms and the development of modern technologies for preserving the reserve of female fertility outside the body are the urgent tasks of national health care in our country.

About the authors

A. A. Shmidt

Military Medical Academy named after S. M. Kirov

Author for correspondence.
Email: andrey_shmidt@inbox.ru
St. Petersburg Russian Federation

O. N. Kharkevich

Military Medical Academy named after S. M. Kirov

Email: Kharkevich.olga@mail.ru
St. Petersburg Russian Federation

L. I. Kalyuzhnaya

Military Medical Academy named after S. M. Kirov

Email: terrestra@mail.ru
St. Petersburg Russian Federation

References

  1. Гамзатова З.Х., Комличенко Э.В., Костарева А.А., Галагудза М.М., Берлев И.В., Урманчеева А.Ф., Ульрих Е.А., Малашичева А.Б., Белякова М.В., Молоткова М.Ю. Возможности криоконсервации овариальной ткани у онкологических больных // Вопросы онкологии. 2015. Т. 61, № 2. С. 199–204.
  2. Курочкина Д.Н., Кулева С.А. Фертильность взрослых, излеченных в детском возрасте от лимфомы Ходжкина // Проблемы репродукции. 2018. Т. 24, № 4. С. 22–27.
  3. De Vos M., Smitz J., Woodruff T.K. Fertility preservation in women with cancer // Lancet. 2014. Vol. 384. Р. 1302–1310.
  4. Demeestere I., Simon P., Dedeken L. et al. Live birth after autograft of ovarian tissue cryopreserved during childhood // Hum. Reprod. 2015. Vol. 30. Р. 2107–2109.
  5. Ito Y., Miyashiro I., Ito H. et al. Long‐term survival and conditional survival of cancer patients in Japan using population based cancer registry data // Cancer Sci. 2014. Vol. 105. Р. 1480–1486.
  6. Takai Y. Recent advances in oncofertility care worldwide and in Japan // Reprod Med Biol. 2018. Vol. 17, No. 4. Р. 356–368.
  7. Gosden R.G., Baird D.T. et al. Restoration of fertility to oophorectomized sheep by ovarian autografts stored at –196 degrees C // Hum. Reprod. 1994. Vol. 9, No. 4. Р. 597–603.
  8. Huang J.Y., Tulandi T., Holzer H., Tan S.L., Chian R.C. Combining ovarian tissue cryobanking with retrieval of immature oocytes followed by in vitro maturation and vitrification: an additional strategy of fertility preservation // Fertil. Steril. 2008. Vol. 89. Р. 567–572.
  9. White Y.A., Woods D.C., Takai Y., Ishihara O., Seki H., Tilly J.L. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive age women // Nat. Med. 2012. Vol. 18. Р. 413–421.
  10. Prasath E.B., Chan M.L., Wong W.H. et al. First pregnancy and live birth resulting from cryopreserved embryos obtained from in vitro matured oocytes after oophorectomy in an ovarian cancer patient // Hum. Reprod. 2014. Vol. 29. Р. 276–278.
  11. Silvestris E., Cafforio P., D’Oronzo S., Felici C., Silvestris F., Loverro G. In vitro differentiation of human oocyte‐like cells from oogonial stem cells: single‐cell isolation and molecular characterization // Hum. Reprod. 2018. Vol. 33. Р. 464–473.
  12. Silber S.J., DeRosa M. et al. A series of monozygotic twins discordant for ovarian failure: ovary transplantation (cortical versus microvascular) and cryopreservation // Hum. Reprod. 2008. Vol. 23, No. 7. Р. 1531–1537.
  13. Silber S.J., Gosden R.G. Ovarian transplantation in a series of monozygotic twins discordant for ovarian failure // N. Engl. J. Med. 2007. Vol. 356, No. 13. Р. 1382–1384.
  14. Silber S.J., Grudzinskas G. et al. Successful pregnancy after microsurgical transplantation of an intact ovary // N. Engl. J. Med. 2008. Vol. 359, No. 24. Р. 2617–2618.
  15. Silber S.J., Lenahan K.M. et al. Ovarian transplantation between monozygotic twins discordant for premature ovarian failure // N. Engl. J. Med. 2005. Vol. 353, No. 1. Р. 58–63.
  16. Huober–Zeeb C., Lawrenz B., Popovici R.M. et al. Improving fertility preservation in cancer: ovarian tissue cryobanking followed by ovarian stimulation can be efficiently combined // Fertil. Steril. 2011. Vol. 95. Р. 342–344.
  17. Moore H.C., Unger J.M., Phillips K.A. et al. Goserelin for ovarian protection during breast cancer adjuvant chemotherapy // N. Engl. J. Med. 2015. Vol. 372. Р. 923–932.
  18. Demeestere I., Brice P., Peccatori F.A. et al. No evidence for the benefit of gonadotropin-releasing hormone agonist in preserving ovarian function and fertility in lymphoma survivors treated with chemotherapy: final long-term report of a prospective randomized trial // J. Clin. Oncol. 2016. Vol. 34. Р. 2568–2574.
  19. Roness H., Kalich-Philosoph L., Meirow D. Prevention of chemotherapy-induced ovarian damage: possible roles for hormonal and non-hormonal attenuating agents // Hum. Reprod Update. 2014. Vol. 20. Р. 759–774.
  20. Loren A.W., Mangu P.B., Beck L.N. et al. Fertility preservation for patients with cancer: American Society of Clinical Oncology clinical practice guideline update // J. Clin. Oncol. 2013. Vol. 31. Р. 2500–2510.
  21. Cobo A., Garcia-Velasco J.A., Coello A., Domingo J., Pellicer A., Remohi J. Oocyte vitrification as an efficient option for elective fertility preservation // Fertil. Steril. 2016. Vol. 105. Р. 755–764.
  22. Von Wolff M., Montag M., Dittrich R., Denschlag D., Nawroth F., Lawrenz B. Fertility preservation in women — a practical guide to preservation techniques and therapeutic strategies in breast cancer, Hodgkin’s lymphoma and borderline ovarian tumours by the fertility preservation network FertiPROTEKT // Arch. Gynecol. Obstet. 2011. Vol. 284. Р. 427–435.
  23. Practice Committees of American Society for Reproductive Medicine, Society for Assisted Reproductive Technology. Mature oocyte cryopreservation: a guideline // Fertil. Steril. 2013. Vol. 99. Р. 37–43.
  24. Practice Committee of American Society for Reproductive Medicine. Ovarian tissue cryopreservation: a committee opinion // Fertil. Steril. 2014. 101. Р. 1237–1243.
  25. Japan Society for Fertility Preservation (ed). Treatment selection and patient support program for supporting and maintaining fertility in breast cancer patients. When breast cancer patients have a desire to bear children in the future, is communication between cancer treatment specialists and reproductive care specialists recommended? // Handbook on Pregnancy, Birth, and Fertility Treatment for Breast Cancer Patients. Tokyo: Kanehara & Company, Ltd, 2014. Р. 14–16.
  26. Киселева М.В., Комарова Е.В., Малинова И.В., Карпейкина М.М., Денисов М.С. Восстановление фертильности у онкологических больных методом ретрансплантации витрифицированной ткани яичника // Репродуктивная медицина. 2013. № 3–4 (16). С. 33–35.
  27. Рухляда Н.Н., Мотовилова Н.О., Грязнов А.Ю., Бирюкова Е.И., Гасымова Д.М., Мельникова М.А. Перспективы и первые результаты аутотрансплантации ткани яичника // Проблемы репродукции. 2013. Т. 19. № 2: 48–51.
  28. Курцер М.А. Предективные технологии и возможности молекулярной генетики в репродуктивной медицине // Вестник Российской академии наук. 2017. Т. 87, № 8. С. 689–695.
  29. Диникина Ю.В., Белогурова М.Б., Первунина Т.М., Комличенко Э.В. Криоконсервация ткани яичника у девочек с онкологической патологией: мультидисциплинарная программа // Современные проблемы подростковой медицины и репродуктивного здоровья молодежи. Кротинские чтения: сборник трудов 2-й Всероссийской научнопрактической конференции. СПб., 2018. Р. 365–366. [
  30. . 30. Киселева М.В., Малинова И.В., Комарова Е.В., Шведова Т.И., Денисов М.С., Каприн А.Д. Первая в России беременность после ортотопической трансплантации витрифицированной овариальной ткани // Исследования и практика в медицине. 2015. Т. 2, № S1. С. 24
  31. Лапина Е.Н., Быстрова О.В., Калугина А.С., Лисянская А.С., Татищева Ю.А., Тапильская Н.И., Манихас Г.М. Первая беременность в России после трансплантации криоконсервированной ткани яичника пациентке с лимфомой Ходжкина (описание случая) // Проблемы репродукции. 2015. № 21 (3). С. 63–67.
  32. Yu K.D., Huang S., Zhang J.X., Liu G.Y., Shao Z.M. Association between delayed initiation of adjuvant CMF or anthracycline-based chemotherapy and survival in breast cancer: a systematic review and meta-analysis // BMC Cancer. 2013. Vol. 13. 240 р. Marine medicine Том 5 № 2/2019 г.
  33. Smith E.C., Ziogas A., Anton-Culver H. Delay in surgical treatment and survival after breast cancer diagnosis in young women by race/ethnicity // JAMA Surg. 2013. Vol. 148. Р. 516–523.
  34. Barekati Z., Gourabi H., Valojerdi M.R., Yazdi P.E. Previous maternal chemotherapy by cyclophosphamide (Cp) causes numerical chromosome abnormalities in preimplantation mouse embryos // Reprod. Toxicol. 2008. Vol. 26. Р. 278–281.
  35. Kato O., Kawasaki N., Bodri D. et al. Neonatal outcome and birth defects in 6623 singletons born following minimal ovarian stimulation and vitrified versus fresh single embryo transfer // Eur J. Obstet Gynecol. Reprod. Biol. 2012. Vol. 161. Р. 46–50.
  36. Karimzadeh M.A., Ahmadi S., Oskouian H., Rahmani E. Comparison of mild stimulation and conventional stimulation in ART outcome // Arch. Gynecol Obstet. 2010. Vol. 281. Р. 741–746.
  37. Grynberg M., Poulain M., le Parco S., Sifer C., Fanchin R., Frydman N. Similar in vitro maturation rates of oocytes retrieved during the follicular or luteal phase offer flexible options for urgent fertility preservation in breast cancer patients // Hum. Reprod. 2016. Vol. 31. Р. 623–629.
  38. Kuang Y., Chen Q., Hong Q. et al. Double stimulations during the follicular and luteal phases of poor responders in IVF/ICSI programmes (Shanghai protocol) // Reprod. Biomed. Online. 2014. Vol. 29. Р. 684–691.
  39. Tatsumi T., Jwa S.C., Kuwahara A., Irahara M., Kubota T., Saito H. No increased risk of major congenital anomalies or adverse pregnancy or neonatal outcomes following letrozole use in assisted reproductive technology // Hum. Reprod. 2017. Vol. 32. Р. 125–132.
  40. Turan V., Bedoschi G., Moy F., Oktay K. Safety and feasibility of performing two consecutive ovarian stimulation cycles with the use of letrozole-gonadotropin protocol for fertility preservation in breast cancer patients // Fertil. Steril. 2013. Vol. 100. Р. 1681–1685.
  41. Noyes N., Porcu E., Borini A. Over 900 oocyte cryopreservation babies born with no apparent increase in congenital anomalies // Reprod Biomed Online. 2009. Vol. 18. Р. 769–776.
  42. Pinborg A., Wennerholm U.B., Romundstad L.B. et al. Why do singletons conceived after assisted reproduction technology have adverse perinatal outcome? Systematic review and meta-analysis // Hum. Reprod Update. 2013. Vol. 19. Р. 87–104.
  43. Maheshwari A., Pandey S., Shetty A., Hamilton M., Bhattacharya S. Obstetric and perinatal outcomes in singleton pregnancies resulting from the transfer of frozen thawed versus fresh embryos generated through in vitro fertilization treatment: a systematic review and meta-analysis // Fertil. Steril. 2012. Vol. 98. Р. 368–377.
  44. Nakashima A., Araki R., Tani H., et al. Implications of assisted reproductive technologies on term singleton birth weight: an analysis of 25777 children in the national assisted reproduction registry of Japan // Fertil. Steril. 2013. Vol. 99. Р. 450–455.
  45. Ishihara O., Araki R., Kuwahara A., Itakura A., Saito H., Adamson G.D. Impact of frozen-thawed single-blastocyst transfer on maternal and neonatal outcome: an analysis of 277,042 single-embryo transfer cycles from 2008 to 2010 in Japan // Fertil. Steril. 2014. Vol. 101. Р. 128–133.
  46. Molina I., Mari M., Martinez J.V., Novella-Maestre E., Pellicer N., Peman J. Bacterial and fungal contamination risks in human oocyte and embryo cryopreservation: open versus closed vitrification systems // Fertil. Steril. 2016. Vol. 106. Р. 127–132.
  47. Papatheodorou A., Vanderzwalmen P., Panagiotidis Y. et al. Open versus closed oocyte vitrification system: a prospective randomized sibling-oocyte study // Reprod Biomed Online. 2013. Vol. 26. Р. 595–602.
  48. Smith G.D., Serafini P.C., Fioravanti J. et al. Prospective randomized comparison of human oocyte cryopreservation with slow-rate freezing or vitrification // Fertil. Steril. 2010. Vol. 94. Р. 2088–2089.
  49. Donnez J., Dolmans M.M. Fertility preservation in women // N. Engl. J. Med. 2017. Vol. 377. Р. 1657–1665.
  50. Kagawa N., Silber S., Kuwayama M. Successful vitrification of bovine and human ovarian tissue // Reprod. Biomed. Online. 2009. Vol. 18. Р. 568–577.
  51. Suzuki N. Oncofertility in Japan: advances in research and the roles of oncofertility consortia // Future Oncol. 2016. Vol. 12. Р. 2307–2311.
  52. Shi Q., Xie Y., Wang Y., Li S. Vitrification versus slow freezing for human ovarian tissue cryopreservation: a systematic review and meta-anlaysis // Sci Rep. 2017. Vol. 7. Р. 8538.
  53. Nakamura Y., Obata R., Okuyama N., Aono N., Hashimoto T., Kyono K. Residual ethylene glycol and dimethyl sulphoxide concentration in human ovarian tissue during warming/thawing steps following cryopreservation // Reprod. Biomed. Online. 2017. Vol. 35. Р. 311–313.
  54. Kawamura K., Cheng Y., Suzuki N. et al. Hippo signaling disruption and Akt stimulation of ovarian follicles for infertility treatment // Proc. Natl. Acad. Sci. USA. 2013. Vol. 110. Р. 17474–17479. Том 5 № 2/2019 г. Морская медицина
  55. Багненко С.Ф., Афанасьев Б.В., Беженарь В.Ф., Рухляда Н.Н. Перспективы применения криоконсервирующих технологий сохранения фертильности у женщин // Исследования и практика в медицине. 2015. Т. 2, № S1. С. 29.
  56. Jensen A.K., Macklon K.T., Fedder J., Ernst E., Humaidan P., Andersen C.Y. 86 successful births and 9 ongoing pregnancies worldwide in women transplanted with frozen-thawed ovarian tissue: focus on birth and perinatal outcome in 40 of these children // J. Assist. Reprod Genet. 2017. Vol. 34. Р. 325–336.
  57. Stern C.J., Gook D., Hale L.G. et al. Delivery of twins following heterotopic grafting of frozen-thawed ovarian tissue // Hum. Reprod. 2014. Vol. 29. Р. 1828.
  58. Meirow D., Levron J., Eldar-Geva T. et al. Pregnancy after transplantation of cryopreserved ovarian tissue in a patient with ovarian failure after chemotherapy // N. Engl. J. Med. 2005. Vol. 353. Р. 318–321.
  59. Van der Ven H., Liebenthron J., Beckmann M. et al. Ninetyfive orthotopic transplantations in 74 women of ovarian tissue after cytotoxic treatment in a fertility preservation network: tissue activity, pregnancy and delivery rates // Hum. Reprod. 2016. Vol. 31. Р. 2031–2041.
  60. Silber S. Ovarian tissue cryopreservation and transplantation: scientific implications // J. Assist. Reprod. Genet. 2016. Vol. 33. Р. 1595–1603.
  61. Andersen C.Y., Rosendahl M., Byskov A.G. et al. Two successful pregnancies following autotransplantation of frozen/thawed ovarian tissue // Hum. Reprod. 2008. Vol. 23. Р. 2266–2272.
  62. Dittrich R., Lotz L., Keck G., et al. Live birth after ovarian tissue autotransplantation following overnight transportation before cryopreservation // Fertil. Steril. 2012. Vol. 97. Р. 387–390.
  63. Soleimani R., Heytens E., Oktay K. Enhancement of neoangiogenesis and follicle survival by sphingosine-1-phosphate in human ovarian tissue xenotransplants // PLoSONE. 2011. Vol. 6. e19475.
  64. Telfer E.E., McLaughlin M. In vitro development of ovarian follicles // Semin. Reprod. Med. 2011. Vol. 29. Р. 15–23.
  65. McLaughlin M., Albertini D.F., Wallace W.H.B., Anderson R.A., Telfer E.E. Metaphase II oocytes from human unilaminar follicles grown in a multi-step culture system // Mol. Hum. Reprod. 2018. Vol. 24. Р. 135–142.
  66. Johnson J., Canning J., Kaneko T., Pru J.K., Tilly J.L. Germline stem cells and follicular renewal in the postnatal mammalian ovary // Nature. 2004. Vol. 428. Р. 145–150.
  67. Zou K., Yuan Z., Yang Z. et al. Production of offspring from a germline stem cell line derived from neonatal ovaries // Nat Cell Biol. 2009. Vol. 11. Р. 631–636.
  68. Zhang H., Panula S., Petropoulos S. et al. Adult human and mouse ovaries lack DDX4-expressing functional oogonial stem cells // Nat. Med. 2015. Vol. 21. Р. 1116–1118.
  69. Zhang H., Zheng W., Shen Y., Adhikari D., Ueno H., Liu K. Experimental evidence showing that no mitotically active female germline progenitors exist in postnatal mouse ovaries // Proc. Nat. Acad. Sci. USA. 2012. Vol. 109. Р. 12580–12585.
  70. Van Eyck A.S., Jordan B.F., Gallez B., Heilier J.F., Van Langendonckt A., Donnez J. Electron paramagnetic resonance as a tool to evaluate human ovarian tissue reoxygenation after xenografting // Fertil. Steril. 2009. Vol. 92. Р. 374–381.
  71. Ayuandari S., Winkler-Crepaz K., Paulitsch M. et al. Follicular growth after xenotransplantation of cryopreserved/thawed human ovarian tissue in SCID mice: dynamics and molecular aspects // J. Assist. Reprod Genet. 2016. Vol. 33. Р. 1585–1593.
  72. Gavish Z., Spector I., Peer G. et al. Follicle activation is a significant and immediate cause of follicle loss after ovarian tissue transplantation // J. Assist. Reprod. Genet. 2017. Vol. 35. Р. 61–69.
  73. Demeestere I., Simon P., Emiliani S., Delbaere A., Englert Y. Orthotopic and heterotopic ovarian tissue transplantation // Hum. Reprod Update. 2009. Vol. 15. Р. 649–665.
  74. Kang B.J., Wang Y., Zhang L., Xiao Z., Li S.W. bFGF and VEGF improve the quality of vitrified-thawed human ovarian tissues after xenotransplantation to SCID mice // J. Assist. Reprod. Genet. 2016. Vol. 33. Р. 281–289.
  75. Kong H.S., Lee J., Youm H.W. et al. Effect of treatment with angiopoietin‐2 and vascular endothelial growth factor on the quality of xenografted bovine ovarian tissue in mice // PLoSONE. 2017. Vol. 12. 0184546.
  76. Man L., Park L., Bodine R. et al. Engineered endothelium provides angiogenic and paracrine stimulus to grafted human ovarian tissue // Sci. Rep. 2017. Vol. 7. Р. 8203.
  77. Oktay K., Bedoschi G., Pacheco F., Turan V., Emirdar V. First pregnancies, live birth, and in vitro fertilization outcomes after transplantation of frozen-banked ovarian tissue with a human extracellular matrix scaffold using robot-assisted minimally invasive surgery // Am. J. Obstet. Gynecol. 2016. Vol. 214 (e1–94): e9.
  78. Shikanov A., Zhang Z., Xu M. et al. Fibrin encapsulation and vascular endothelial growth factor delivery promotes ovarian graft survival in mice // Tissue Eng Part A. 2011. Vol. 17. Р. 3095–3104. Marine medicine Том 5 № 2/2019 г.
  79. Rosendahl M., Greve T., Andersen C.Y. The safety of transplanting cryopreserved ovarian tissue in cancer patients: a review of the literature // J. Assist. Reprod. Genet. 2013. Vol. 30. Р. 11–24.
  80. Balduzzi A., Dalle J.H., Jahnukainen K. et al. Fertility preservation issues in pediatric hematopoietic stem cell transplantation: practical approaches from the consensus of the Pediatric Diseases Working Party of the EBMT and the International BFM Study Group // Bone Marrow Transplant. 2017. Vol. 52. Р. 1406–1415.
  81. Shapira M., Raanani H., Barshack I. et al. First delivery in a leukemia survivor after transplantation of cryopreserved ovarian tissue, evaluated for leukemia cells contamination // Fertil. Steril. 2017. Vol. 109. Р. 48–53.
  82. Ito Y., Shiraishi E., Kato A. et al. The utility of decision trees in oncofertility care in Japan // J. Adolesc. Young Adult Oncol. 2017. Vol. 6. Р. 186–189.
  83. Scott-Trainer J. The role of a patient navigator in fertility preservation // Cancer Treat. Res. 2010. Vol. 156. Р. 469–470.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies