Тhe role of the glutamatergic system in the mechanism of development of hyperbaric oxygen seizures

Cover Page

Cite item

Full Text

Abstract

The purpose of the scientific article was to study the neurophysiological mechanisms of the occurrence of convulsive activity when breathing oxygen under high pressure under conditions of hyperbaric oxygen and the role of the glutamatergic system in this process.
Research methods: Wistar rats, males, weighing 200–250 g. in the amount of 20 were used in the work. The animals were placed in a pressure chamber and compressed with medical oxygen up to 5 ATА. Behavioral reactions and signs of convulsive activity were recorded in animals during compression and during subsequent exposure. Two experimental groups were previously injected with a glutamine synthetase inhibitor at various concentrations 6 hours before compression.
The main results showed that irreversible inhibition of glutamine synthetase in the rat brain under the action of increased oxygen pressure led to a significant decrease in the latent period of convulsions.

About the authors

O. S. Alekseeva

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Author for correspondence.
Email: osa72@inbox.ru
ORCID iD: 0000-0001-5688-347X

St. Petersburg 

Russian Federation

References

  1. Demchenko I.T., Piantadosi C.A. Nitric oxide amplifies the excitatory to inhibitory neurotransmitter imbalance accelerating oxygen seizures // Undersea Hyperb. Med. 2006. Vol. 33, No. 3. Р. 169–174.
  2. D’Agostino D.P., Putnam R.W., Dean J.B. Superoxide (·O2–) production in CA1 neurons of rat hippocampal slices exposed to graded levels of oxygen // J. Neurophysiol. 2007. Vol. 98. Р. 1030–1041.
  3. Гершенович З.С., Кричевская А.А., Колоушек Я. Действие кислорода под давлением на активность глутаминсинтетазы в мозгу крыс // Биохимия. 1963. Т. 28, № 2. С. 303–307. Gershenovich Z.S., Krichevskaya A.A., Koloushek Ya. Dejstvie kisloroda pod davleniem na aktivnost’ glutaminsintetazy v mozgu krys // Biohimiya. 1963. Т. 28, No. 2. S. 303–307.
  4. Mialon P., Gibey R., Bigot J.C., Barthelemy L. Changes in striatal and cortical amino acid and ammonia levels of rat brain after one hyperbaric oxygen-induced seizures // Aviat. Space Environ. Med. 1992. Vol. 63, No. 4. Р. 287–291.
  5. Wood J.D., Watson W.J. Protective action of gamma-aminobutyric acid against oxygen toxicity // Nature. 1962. Vol. 195. Р. 296.
  6. Martinez-Hernandez A., Bell K.P., Norenberg M.D. Glutamine synthetase: glial localization in brain // Science. 1977. Vol. 195. Р.1356–1368.
  7. Norenberg M.D. Distribution of glutamine synthetase in the rat central nervous system // J. Histochem. Cytochem. 1979. Vol. 27. Р. 756–762.
  8. Boksha I.S., Tereshkina E.B., Savushkina O.K., Prokhorova T.A., Vorobyeva E.A., Burbaeva G.Sh. Comparative Studies of Glutamine Synthetase Levels in the Brains of Patients with Schizophrenia and Mentally Healthy People // Neurochemical Journal. 2018. Vol. 12. Р. 95–101.
  9. Eid T., Tu N., Lee T.S., Lai J.C. Regulation of astrocyte glutamine synthetase in epilepsy // Neurochem. Int. 2013. Vol. 63, No. 7. Р. 670–681.
  10. Robinson S.R. Changes in the cellular distribution of glutamine synthetase in Alzheimer’s disease // J. Neurosci Res. 2001. Vol. 66. Р. 972–980.
  11. Dutuit M., Didier-Bazes M., Vergnes M., Mutin M., Conjard A., Akaoka H., Belin M.F., Touret M. Specific alteration in the expression of glial fibrillary acidic protein, glutamate dehydrogenase, and glutamine synthetase in rats with genetic absence epilepsy // Glia. 2000. Vol. 32. Р. 15–24.
  12. Racine R.J. Modification of seizure activity by electrical stimulation. II. Motor seizure // Electroencephalography and Clinical Neurophysiology. 1972. Vol. 32, No. 3. Р. 281–294.
  13. Москвин А.Н., Платонова Т.Ф., Жиляев С.Ю., Алексеева О.С., Никитина Е.Р., Демченко И.Т. Блокада транспортеров гамма-аминомасляной кислоты в синапсах головного мозга предохраняет от развития судорог при дыхании кислородом под давлением // Росс. физиол. журнал им. И. М. Сеченова. 2019. Т. 105, № 4. С. 510–519. Moskvin A.N., Platonova T.F., Zhilyaev S.Yu., Alekseeva O.S., Nikitina E.R., Demchenko I.T. Blokada transporterov gamma-aminomaslyanoj kisloty v sinapsah golovnogo mozga predohranyaet ot razvitiya sudorog pri dyhanii kislorodom pod davleniem // Ross. Fiziol. zhurnal im. I. M. Sechenova. 2019. Т. 105, No. 4. S. 510–519.
  14. Clark J.M., Lambertsen C.J., Gelfand R., Troxel A.B. Optimization of oxygen tolerance extension in rats by intermittent exposure // J. Appl. Physiol. 2006. Vol. 100, No. 3. Р. 869–879.
  15. Eid T., Ghosh A., Wang Y., Beckström H., Zaveri H.P., Lee T.S., Lai J.C., Malthankar-Phatak G.H., de Lanerolle N.C. Recurrent seizures and brain pathology after inhibition of glutamine synthetase in the hippocampus in rats // Brain. 2008. Vol. 131, Pt 8. Р. 2061–2070.
  16. Manning J.M., Moore S., Rowe W.B., Meister A. Identification of L-methionine S-sulfoximine as the diastereoisomer of L-methionine SR-sulfoximine that inhibits glutamine synthetase // Biochemistry. 1969. Vol. 8, No. 6. Р. 2681–2685.
  17. Bidmon H.J., Gоrg B., Palomero-Gallagher N., Schleicher A., Hаussinger D., Speckmann E.J., Zilles K. Glutamine synthetase becomes nitrated and its activity is reduced during repetitive seizure activity in the pentylentetrazole model of epilepsy. Epilepsia, 2008. Vol. 49, No. 10. Р. 1733–1748.
  18. Raju K., Doulias P.T., Evans P., Krizman E.N., Jackson J.G., Horyn O., Daikhin Y., Nissim I., Yudkoff M., Nissim I., Sharp K.A., Robinson M.B. Ischiropoulos H. Regulation of brain glutamate metabolism by nitric oxide and S-nitrosylation // Sci. Signal. 2015. Vol. 8, No. 384. Р. ra68.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies