Research of diver body functions’ state with different resistance to the toxic oxygen effect: prospective cohort study
- Authors: Zverev D.P.1, Israfilov Z.M.1, Myasnikov A.A.1, Shitov A.Y.1, Chernov V.I.1
-
Affiliations:
- S. M. Kirov Military Medical Academy
- Issue: Vol 8, No 3 (2022)
- Pages: 30-39
- Section: DIVING MEDICINE
- Submitted: 22.10.2022
- Accepted: 22.10.2022
- Published: 22.10.2022
- URL: https://seamed.bmoc-spb.ru/jour/article/view/577
- DOI: https://doi.org/10.22328/2413-5747-2022-8-3-30-39
- ID: 577
Cite item
Full Text
Abstract
INTRODUCTION: The relevance of this issue is due to the fact that nowadays there is no common understanding of the influence degree of high partial oxygen pressures on a body functions’ state, depending on individual resistance.
OBJECTIVE: Research the state of the functions of the central nervous, cardiovascular and respiratory systems among people with different resistance to the toxic oxygen effect in the descending and the nearest post-descending period.
MATERIALS AND METHODS: There was an examination of 11 divers aged 23 to 43 (the average age is 35.5±6.5 years) in conditions of a simulated descent in a pressure chamber to the depth of 15 m (0.25 MPa) while breathing oxygen, and also during 3 days after its termination. Statistic: Software SPSS, v. 20.0 (IBM) was applied for statistical processing of the results.
RESULTS: Baseline heart rate (HR) in the low toxic oxygen resistant group (group I) is 10% (р<0.05) higher than the subjects, recognized as resistant (group II). To 60 minutes oxygen breathing (pO2=0.25 MPa) there is a decrease in heart rate (HR) by 12.5% in group I and 11% in group II, comparing the baseline (р><0.05). An increase of diastolic pressure level in group II is 10.5% to 15 min descent and 18% to 45 min, comparing the baseline (р><0.05). In group I the pulse pressure level reduced by 18%, comparing the baseline (р><0.05). Gencha test results after descent rose by 55% in group I and by 62.5% in group II, comparing the baseline (р�0.05), and indicators higher than initial remained for 3 days more. In group I there was reduction of information processing speed by a visual analyzer of 16% (from 0.788 to 0.661 b/sec) and increase in escape latency of a simple visual-motor reaction by 11.7%, comparing the baseline (р><0.05). DISCUSSION: Divers with different resistance to the toxic oxygen effect experience multidirectional reaction of the central nervous, cardiovascular and respiratory systems. Individuals, resistant to the toxic oxygen effect, are characterized by more active inclusion of counteraction mechanisms to hyperoxia and significant reduction in the level of adaptation reserves and the efficiency of the cardiovascular system. People with low resistance experience a decrease in the functionality level of the central nervous system. CONCLUSION: The results obtained have a basis for admitting the application of the method of determining individual body resistance to the toxic oxygen effect and tests with increasing dosed physical activity in order to estimate adaptation reserves and efficiency. >< 0.05) higher than the subjects, recognized as resistant (group II). To 60 minutes oxygen breathing (pO2=0.25 MPa) there is a decrease in heart rate (HR) by 12.5% in group I and 11% in group II, comparing the baseline (р< 0.05). An increase of diastolic pressure level in group II is 10.5% to 15 min descent and 18% to 45 min, comparing the baseline (р< 0.05). In group I the pulse pressure level reduced by 18%, comparing the baseline (р< 0.05). Gencha test results after descent rose by 55% in group I and by 62.5% in group II, comparing the baseline (р 0.05), and indicators higher than initial remained for 3 days more. In group I there was reduction of information processing speed by a visual analyzer of 16% (from 0.788 to 0.661 b/sec) and increase in escape latency of a simple visual-motor reaction by 11.7%, comparing the baseline (р< 0.05).
DISCUSSION: Divers with different resistance to the toxic oxygen effect experience multidirectional reaction of the central nervous, cardiovascular and respiratory systems. Individuals, resistant to the toxic oxygen effect, are characterized by more active inclusion of counteraction mechanisms to hyperoxia and significant reduction in the level of adaptation reserves and the efficiency of the cardiovascular system. People with low resistance experience a decrease in the functionality level of the central nervous system.
CONCLUSION: The results obtained have a basis for admitting the application of the method of determining individual body resistance to the toxic oxygen effect and tests with increasing dosed physical activity in order to estimate adaptation reserves and efficiency.
About the authors
D. P. Zverev
S. M. Kirov Military Medical Academy
Author for correspondence.
Email: z.d.p@mail.ru
ORCID iD: 0000-0003-3333-6769
Dmitry P. Zverev — Cand. of Sci. (Med.), Associate Professor, Colonel of the Medical Service, Head of the Department (Physiology of Scuba Diving) of the Federal State Budgetary Military Educational Institution of Higher Education
194044, St. Petersburg, Academician Lebedev Street 6
Russian FederationZ. M. Israfilov
S. M. Kirov Military Medical Academy
Email: warag05@mail.ru
ORCID iD: 0000-0002-3524-7412
Israfilov Zagir Mallarajabovich — Lieutenant Colonel of the Medical Service, Adjunct of the Department (Physiology of Scuba
Diving) of the Federal State Budgetary Military Educational Institution of Higher Education
194044, St. Petersburg, Academician Lebedev Street 6
Russian FederationA. A. Myasnikov
S. M. Kirov Military Medical Academy
Email: a_mjasnikov@mail.ru
ORCID iD: 0000-0002-7427-0885
Alexey A. Myasnikov — Dr. of Sci. (Med.), Professor, Honored Worker of the Higher School of the Russian Federation, Colonel of the Reserve Medical Service, Professor of the Department (Physiology of Scuba Diving) of the Federal State Budgetary Military Educational Institution of Higher Education
194044, St. Petersburg, Academician Lebedev Street 6
Russian FederationA. Yu. Shitov
S. M. Kirov Military Medical Academy
Email: arseniyshitov@mail.ru
ORCID iD: 0000-0002-5716-0932
Arseniy Yu. Shitov — Cand. of Sci. (Med.), Honored Inventor of the Russian Federation, Senior lecturer of the Department (Physiology of Scuba Diving) of the Federal State Budgetary Military Educational Institution of Higher Education
194044, St. Petersburg, Academician Lebedev Street 6
Russian FederationV. I. Chernov
S. M. Kirov Military Medical Academy
Email: chernov_61@mail.ru
ORCID iD: 0000-0002-8494-1929
Vasily I. Chernov — Cand. of Sci. (Med.), Associate Professor, retired Colonel of the Medical Service, Associate Professor of the
Department (Physiology of Scuba Diving) of the Federal State Budgetary Military Educational Institution of Higher Education
194044, St. Petersburg, Academician Lebedev Street 6
Russian FederationReferences
- Boussuges A. Echocardiography in military oxygen divers // Aviation, Space, and Environmental Medicine. 2007. Vol. 78, Nо. 5. Р. 500–504. PMID: 17539444.
- Gole Y. Arterial compliance in divers exposed to repeated hyperoxia using rebreather equipment // Aviation, Space, and Environmental Medicine. 2009. Vol. 80, Nо. 5. Р. 482–484. doi: 10.3357/asem.2457.2009.
- Nuckols M.L. Oxygen levels in closed circuit UBAs during descent // Life Support & Biosphere Science. 1996. Vol. 2, Nо. 3–4. Р. 117–124. PMID: 11538560.
- Åsmul K. Diving and long-term cardiovascular health // Occupational medicine (Oxford, England). 2017. Vol. 67, Nо. 5. Р. 371–376. doi: 10.1093/occmed/kqx049.
- Jammes Y. Hyperbaric hyperoxia induces a neuromuscular hyperexcitability: assessment of a reduced response in elite oxygen divers // Clinical Physiology and Functional Imaging. 2003. Vol. 23, Nо. 3. Р. 149–154. doi: 10.1046/j.1475- 097x.2003.00486.x.
- Ганапольский В.П. Использование математического моделирования для прогноза безболевого течения декомпрессионной болезни у спортивных дайверов // Известия Российской военно-медицинской академии. 2020. Т. 39, № S3–1. С. 19–21. ISSN: 2713–2315.
- Щеголев В.А., Попов С.В. Несчастные случаи, возникающие с водолазами в связи с особенностями водной среды и несоблюдением мер безопасности // Медико-биологические и социально-психологические проблемы безопасности в чрезвычайных ситуациях. 2013. № 2. С. 27–31.
- Мясников А.А., Ефиценко Е.В., Зверев Д.П., Кленков И.Р. Хроническая декомпрессионная болезнь и ее диагностика // Вестник Российской военно-медицинской академии. 2018. № 4 (64). С. 26–31.
- Wingelaar T.T., van Ooij P.-J.A.M., van Hulst R.A. Oxygen Toxicity and Special Operations Forces Diving: Hidden and Dangerous // Front Psychol. 2017. Vol. 8. Р. 1–9. doi: 0.3389/fpsyg.2017.01263.
- Di Piero V. Cerebral effects of hyperbaric oxygen breathing: a CBF SPECT study on professional divers // European Journal of Neurology. 2002. Vol. 9, Nо. 4. Р. 419–421. doi: 10.1046/j.1468-1331.2002.00436.x.
- Ooij P.-J.A.M., van, Sterk P.J., van Hulst R.A. Oxygen, the lung and the diver: friends and foes? // Eur. Respir. Rev. 2016. Vol. 25, No. 142. Р. 496–505. doi: 10.1183/16000617.0049-2016.
- Вагин Ю.Е., Деунежева С.М., Хлытина А.А. Вегетативный индекс Кердо: роль исходных параметров, области и ограничения применения // Физиология человека. 2021. Т. 47, № 1. С. 31–42.
- Самойлов А.С., Никонов Р.В., Пустовойт В.И., Ключников М.С. Применение методики анализа вариабельности сердечного ритма для определения индивидуальной устойчивости к токсическому действию кислорода // Спортивная медицина: наука и практика. 2020. Т. 10, № 3. С. 73–80.
- Tocco F. Cardiovascular adjustments in breath-hold diving: comparison between divers and non-divers in simulated dynamic apnoea // European Journal of Applied Physiology. 2012. Vol. 112, Nо. 2, pp. 543–554. doi: 10.1007/s00421-011-2006-0.
- Мальцев, Д.Н. Диагностическое значение пробы Руфье // Здоровье человека, теория и методика физической культуры и спорта. 2019. № 5 (16). С. 113–120.
- Гржибовский А.М., Унгуряну Т.Н., Горбатова М.А. Описательная статистика с использованием пакетов статистических программ SPSS и Stata // Наркология. 2017. Т. 16, № 4 (184). С. 36–51.
- Ooij P.-J.A.M., van. Lung function before and after oxygen diving: a randomized crossover study // Undersea and Hyperbaric Medicine. 2012. Vol. 39, Nо. 3. Р. 699–707. PMID: 22670550.
- Hirayanagi K., Nakabayashi K., Okonogi K., Ohiwa H. Autonomic nervous activity and stress hormones induced by hyperbaric saturation diving // Undersea and Hyperbaric Medicine, 2003, No. 30 (1), pp. 47–55. PMID: 12841608.
- Ciarlone G.E., Hinojo C.M., Stavitzski N.M., Dean J.B. CNS function and dysfunction during exposure to hyperbaric oxygen in operational and clinical settings // Redox Biology. 2019. Vol. 27. Р. 101–159. doi: 10.1016/j.redox.2019.101159.