Main mechanisms of central nervous system damage with combined infection of HIV and SARS-COV-2: review

Cover Page

Cite item

Full Text

Abstract

OBJECTIVE: Assess the degree of elaboration regarding mechanisms of the nervous system damage in HIV infection to further evaluate SARS-CoV-2, as a possible contributing factor in emergence and worsening psycho-neurological pathology in HIV-infected patients.
MATERIALS AND METHODS: The analytical review was conducted using the medical database PubMed. More than 20 domestic and 30 foreign publications were studied on the mechanisms of the nervous system damage in HIV infection and SARS-CoV-2 between 2019-2022.
Some preliminary study was conducted. Outpatient charts data of 146 HIV-infected patients were analyzed; a confirmed diagnosis of COVID-19 mild or moderate form (between 2020-2022) appeared in 42 (25,8%) cases (1st group). The comparison group (2nd group) included 40 patients without HIV infection, but suffered COVID-19, who were surveyed after signing voluntary informed consent. The survey data provided insight into the frequency and severity of neuropsychiatric manifestations and their possible connection with COVID-19.
RESULTS: The high neuroinvasive and neurotropic HIV potential was demonstrated and implemented in a variety of ways and mechanisms that manifests in clinical practice by the appearance of diverse neuropsychiatric symptomatology. The study proved the influence of HIV infection on ACE-2 receptor expression by neurovascular cells (NVC) and also revealed some other features, contributing to the potentiation of SARS-CoV-2 invasion in CNS. The results of the preliminary study showed that in the group with HIV-infected 9 patients (21,4% of recover from COVID-19) experienced long-term neuropsychiatric manifestations after coronavirus infection, while all patients had long-term suppressed HIV viral load against the backdrop of regular ARV therapy and satisfactory immune status (CD4+ T-lymphocytes count). In the group without HIV infection after COVID-19 22 (55%) patients experienced neuropsychiatric complications, estimated by them as “extremely strong”.
DISCUSSION: Although the study did not reveal a clear link between the presence of immunodeficiency in HIV infection and manifestation of neuropsychiatric pathology after COVID-19, further research is needed to define mutual influence of HIV and SARS-CoV-2 on the emergence of neuropsychiatric pathology.
CONCLUSION: Considering a lack of research, where the results obtained could reliably confirm increased risk of complications from the nervous system, caused by SARS-CoV-2 against the backdrop of the existing HIV infection, there is reason to believe that this problem remains relevant today. This dictates the need to examine closely neurological status in patients of this category and monitor neurological complications.

About the authors

V. V. Rassokhin

Pavlov First St. Petersburg State University

Author for correspondence.
Email: ras-doc@mail.ru
ORCID iD: 0000-0002-1159-0101

Vadim V. Rassokhin – Dr. of Sci. (Med.), Associate Professor, Professor of the Department of Socially Significant Infections and Phthisiopulmonology 

Saint Petersburg, Lev Tolstoy str., 6-8

Russian Federation

E. I. Svetashova

Pavlov First St. Petersburg State University

Email: elizabethsvet@gmail.com

Elizaveta I. Svetashova – Clinical Resident of the Department of Socially Significant Infections and Phthisiopulmonology 

Saint Petersburg, Lev Tolstoy str., 6-8

Russian Federation

I. О. Modestova

City polyclinic № 95

Email: irine-mod@yandex.ru

Irina O. Modestova – Head of the Department of Infectious and Parasitic Diseases and Immunoprophylaxis 

Saint Petersburg, Kolpino, Lenin Ave., 46

Russian Federation

N. V. Kaplevskaya

City polyclinic № 95

Email: nata.kaplevskaya.78@mail.ru

Natalia V. Kaplevskaya – Deputy Chief Medical Officer 

Saint Petersburg, Kolpino, Lenin Ave., 46

Russian Federation

N. А. Belyakov

Pavlov First St. Petersburg State University

Email: beliakov.akad.spb@yandex.ru
ORCID iD: 0000-0002-2006-2255

Nikolay A. Belyakov – Dr. of Sci. (Med.), Professor, Academician of the Russian Academy of Sciences, Head of the Pavlov University 

Saint Petersburg, Lev Tolstoy str., 6-8

Russian Federation

References

  1. Cagnazzo F., Arquizan C., Derraz I., et al. Neurological manifestations of patients infected with the SARS-CoV-2: A systematic review of the literature. J. Neurol, 2020, Vol. 267, N 15, p. 3.
  2. Ghannam M., Alshaer Q., Al-Chalabi M., et al. Neurological involvement of coronavirus disease 2019: A systematic review. J. Neurol, 2020, Vol. 267, № 11, pp. 3135–3153.
  3. Лесина О.Н., Гущин О.А., Кумарева Д.Ю. Клинико-лабораторные особенности пациентов при коинфекции HIV и SARS-CoV-2 // Журнал инфектологии. 2021. Т. 13, № 3. С. 148–149
  4. Беляков Н.А., Медведев С.В., Трофимова Т.Н., Рассохин В.В., Дементьева Н.Е., Шеломов А.С. Механизмы поражения головного мозга при ВИЧ-инфекции // Вестник РАМН. 2012. № 9. С. 4–12
  5. Eggers C., Arendt G., Hahn K., et al. HIV-1-associated neurocognitive disorder: epidemiology, pathogenesis, diagnosis, and treatment. J. Neurol, 2017, Vol. 264, pp. 1715–1727. doi: 10.1007/s00415-017-8503-2.
  6. Wang Y., Liu M., Lu Q., Farrell M., Lappin J.M., Shi J., Lu L., Bao Y. Global prevalence and burden of HIV-associated neurocognitive disorder. A meta-analysis. Neurology, 2020, Vol. 95, № 19, pp. e2610–e2621.
  7. Gonzalez-Duarte A., Cikurel K. & Simpson D.M. Managing HIV peripheral neuropathy. Current HIV/AIDS, 2007, 4, 114–118. doi: 10.1007/s11904-007-0017-6.
  8. Putatunda R., Ho W.Z., Hu W. HIV-1 and Compromised Adult Neurogenesis: Emerging Evidence for a New Paradigm of HAND, Persistence. 2019, AIDS Reviews, 21(1), 11–22. doi: 10.24875/AIDSRev.19000003.
  9. Toborek M., Lee Y.W., Flora G., Pu H., Andras I.E., Wylegala E., et al. Mechanisms of the blood-brain barrier disruption in HIV-1 infection, Cell Molecular Neurobiol, 2005, Vol. 25, № 1, 181–99. doi: 10.1007/s10571-004-1383-x.
  10. Беляков Н.А., Рассохин В.В. ВИЧ-инфекция и коморбидные состояния. СПб: Балтийский медицинский образовательный центр, 2020, 680 C.
  11. Muoio V., Persson P.B., Sendeski M.M. The neurovascular unit – concept review. Acta Physiolgica (Oxf), 2014, Vol. 210, № 4, 790–798, doi: 10.1111/apha.12250.
  12. Yu X., Ji C., Shao A. Neurovascular Unit Dysfunction and Neurodegenerative Disorders. Fronties in Neuroscience, 2020, № 14, pp. 334, doi: 10.3389/fnins.2020.00334.
  13. Cai W., Zhang K., Li P., Zhu L., Xu J., Yang B., Hu X., Lu Z., Chen J. Dysfunction of the neurovascular unit in ischemic stroke and neurodegenerative diseases: An aging effect. Ageing Research Reviews, 2017, N 34, 77–87. doi: 10.1016/j.arr.2016.09.006.
  14. Евзельман М.А., Снимщикова И.А., Королев Л.Я., Камчатнов П.Р. Неврологические осложнения ВИЧ-инфекции // Журнал неврологии и психиатрии. 2015. № 3. С. 89–93
  15. Torices S., Cabrera R., Stangis M., Naranjo O., Fattakhov N., Teglas T., et al. Expression of SARS-CoV-2-related receptors in cells of the neurovascular unit: implications for HIV-1 infection. Journal of Neuroinflammation, 2021, Vol. 18, p. 167. doi: 10.1186/s12974-021-02210-2.
  16. Wallet C., De Rovere M., Van Assche J., Daouad F., De Wit S., Gautier V., et al. Microglial cells: the main HIV-1 reservoir in the brain. Front Cell Infect. Microbiol, 2019, № 9, pp. 362. doi: 10.3389/fcimb.2019.00362.
  17. Cenker J.J., Stultz R.D., McDonald D. Brain microglial cells are highly susceptible to HIV-1 infection and spread. AIDS Res Hum Retroviruses, 2017, Vol. 33, N. 11, pp. 1155–1165. doi: 10.1089/aid.2017.0004.
  18. Narasipura S.D., Kim S., Al-Harthi L. Epigenetic regulation of HIV-1 latency in astrocytes. J. Virol. 2014, Vol. 88, N. 5, pp. 3031–3038. doi: 10.1128/JVI.03333-13.
  19. Lutgen V., Narasipura S.D., Barbian H.J., Richards M., Wallace J., Razmpour R., et al. HIV infects astrocytes in vivo and egresses from the brain to the periphery. PLoS Pathog, 2020, Vol. 16, № 6, pp. e1008381, doi: 10.1371/journal.
  20. Kanmogne G.D., Grammas P., Kennedy R.C. Analysis of human endothelial cells and cortical neurons for susceptibility to HIV-1 infection and coreceptor expression. J Neurovirol, 2000, Vol. 6, № 6, pp. 519–528. doi: 10.3109/13550280009091952.
  21. Joseph S.B., Arrildt K.T., Sturdevant C.B., Swanstrom R. HIV-1 target cells in the CNS. J Neurovirol, 2015, Vol. 21, № 3, pp. 276–289. doi: 10.1007/s13365-014-02 87-x.
  22. Miller F., Afonso P.V., Gessain A., Ceccaldi P.E. Blood-brain barrier and retroviral infections. Virulence, 2012, Vol. 3, № 2, 222–229. doi: 10.4161/viru.19697.
  23. Verani A., Gras G., Pancino G. Macrophages and HIV-1: dangerous liaisons. Molecular Immunology, 2005, Vol. 42, № 2, pp. 195–212. doi: 10.1016/j.molimm.2004.06.020.
  24. Bertrand L., Cho H.J., Toborek M. Blood-brain barrier pericytes as a target for HIV-1 infection. Brain, 2019, Vol. 142, № 3, pp. 502–511. doi: 10.1093/brain/awy339.
  25. Nakagawa S., Castro V., Toborek M. Infection of human pericytes by HIV-1 disrupts the integrity of the blood-brain barrier. J Cell Mol Med, 2012, Vol. 16, № 12, pp. 2950–2957, doi: 10.1111/j.1582-4934.2012.01622.x.
  26. Joon Cho H., Mei-Shiuan Kuo A., Bertrand L., Toborek M. HIV alters junction-mediated intercellular communication in human brain pericytes, Frontiers in molecular neuroscience, 2017, № 10, p. 410.
  27. Супотницкий М.В. Эволюционная патология. К вопросу о месте ВИЧ-инфекции и ВИЧ-СПИД-пандемии среди других инфекционных, эпидемических и пандемических процессов // M.: Вузовская книга, 2009, 400 с.
  28. Зайцев И.А., Мирошниченко В.А. Поражение нервной системы при ВИЧ-инфекции и СПИДе // Новости медицины и фармации. 2011. № 9 (364)
  29. Hu X.T. HIV-1 Tat-Mediated Calcium Dysregulation and Neuronal Dysfunction in Vulnerable Brain Regions. Current Drug Targets, 2016, Vol. 17, No. 1, pp. 4–14. doi: 10.2174/1389450116666150531162212.
  30. Roszkiewicz J., Smolewska E. Kaleidoscope of autoimmune diseases in HIV infection. Rheumatology International, 2016, Vol. 36, No. 11, pp. 1481–1491. doi: 10.1007/s00296-016-3555-7.
  31. Eggers C., Rosenkranz T. ВИЧ-1-ассоциированное нейрокогнитивное расстройство (HAND) и ВИЧ-ассоциированная миелопатия // ВИЧ 2014-2015, 2014. С.759–768.
  32. Durand M., Sheehy O., Baril J.G., et al. Risk of spontaneous intracranial hemorrhage in HIV-infected individuals: a population-based cohort stud. Stroke Cerebrovasc Dis, 2013, Vol. 22, pp. 34–41.
  33. Тибекина Л.М., Малько В.А., Флуд В.В., Лепилина А.В. Церебральные инсульты у больных с ВИЧ-инфекцией // ВИЧ-инфекция и иммуносупрессии. 2019. Т. 11, № 4. С. 51–59
  34. Шеломов А.С., Степанова Е.В., Леонова О.Н., Смирнова Н.Л. Оппортунистические заболевания как причины поражения центральной нервной системы у больных ВИЧ-инфекцией // Журнал инфектологии. 2016. Т. 8, № 3. С. 107–115
  35. Трофимова Т.Н., Рассохин В.В., Леонова О.Н., Шеломов А.С., Яковлев А.А., Азовцева О.В., Бакулина Е.Г., Беляков Н.А. Поражения структур головного мозга при ВИЧ-инфекции // Клинические исследования и практика. 2019. Т. 19, № 3. С. 83–95
  36. Гайсина А.В., Магонов Е.П., Громова Е.А., Гурская О.Е., Трофимова Т.Н., Рассохин В.В., Беляков Н.А. Патологические механизмы ВИЧ-ассоциированных нейрокогнитивных расстройств // Лучевая диагностика и терапия. 2016. Т 7, № 2. С. 6–21
  37. Liu Y., Sawalha A.H., Lu Q. COVID-19 and autoimmune diseases. Current Opinion in Rheumatology. 2021, Vol. 33, № 2, pp. 155–162. doi: 10.1097/BOR.0000000000000776.
  38. Беляков Н.А., Багненко С.Ф., Рассохин В.В. и др. Эволюция пандемии COVID-19. СПб.: Балтийский медицинский образовательный центр. 2021. 410 с.
  39. Беляков Н.А., Багненко С.Ф., Трофимова Т.Н., Рассохин В.В. и др. Последствия пандемии COVID-19, СПб.: Балтийский медицинский образовательный центр, 2022. 463 с.
  40. Payus A.O., Jeffree M.S., Ohn M.H., Tan H.J., Ibrahim A., Chia Y.K., Raymond A.A. Immune-mediated neurological syndrome in SARS-CoV-2 infection: a review of literature on autoimmune encephalitis in COVID-19. Neurol Sci, 2022, Vol. 43, № 3, pp. 1533–1547. doi: 10.1007/s10072-021-05785-z.
  41. Zipeto D., Palmeira J.D.F., Arganaraz G.A., Arganaraz E.R. ACE2/ADAM17/TMPRSS2 interplay may be the main risk factor for COVID-19. Front Immunol. 2020, № 11, 576745.
  42. Schreiber B., Patel A., Verma A. Shedding light on COVID-19: ADAM17 the missing link? Am J Ther, 2020, Vol. 8, № 3, pp. e358–e360. doi: 10.1097/MJT.0000000000001226.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies