«Pressure diuresis» phenomenon: mechanisms and physiological significance in diving medical support practice: prospective cohort study

Cover Page

Cite item

Full Text

Abstract

INTRODUCTION: When staying in hyperbaric conditions there is an increase in diuresis, developing a negative water balance, loss of electrolytes and tissue dehydration after diving different in depth, duration, intensity and other parameters, which can be conditionally combined into specific physiological symptom complex – “pressure diuresis” phenomenon (or “diver diuresis”).
OBJECTIVE: To investigate the mechanisms of “pressure diuresis” under the action of high gaseous medium pressure and determine the physiological nature of this phenomenon in divers.
MATERIALS AND METHODS: 44 men aged 19–23 were examined. In the first study all the subjects had initial sustainability to hyperbaric adverse factors (decompression gas formation – DG, hypoxic hypoxia – HH, nitrogen toxic effect – NTE and oxygen toxic effect – OTE). Hormonal status and body’s osmotic homeostasis rates were defined in all the subjects. The second study evaluated changes of the subjects’ water-electrolyte metabolism, kidney function and osmotic homeostasis during the oral loading renal test with the water load in the baseline and conditions of hyperbaric adverse factor exposure on divers.
Statistics: To perform statistical analysis, application packages of Statistica for Windows 10.0 were used.
RESULTS: 17 (38,6 %), 29 (65,9 %), 20 (45,5 %) and 35 (79,6 %) subjects had medium and low resistance to DG, HH, OTE and NTE, respectively; 27 (61,4 %), 15 (34,1 %), 24 (54,5 %) and 9 (20,4 %) subjects had high resistance to DG, HH, OTE and NTE. Increase in the concentration of antidiuretic hormone was identified in the diving group with low and medium resistance to NTE, HH, and OTE (by 146,8, 141,1 and 93,2 %, respectively, compared to the results before hyperbaric adverse factor exposure). The highest concentration increase of aldosterone was found among the divers with low and medium resistance to OTE, DG and HH (by 41,5, 39,1 and 36,2 %, respectively). The increase in blood plasma osmolality was observed in the subjects with low and medium resistance to OTE (an increase by 6,6 % compared to the divers with high resistance). A significant reduction in blood plasma osmolality was recorded in the subject group with low and medium resistance to NTE and HH (reduction by 5,2 and 4,2 %, compared to the group with high resistance). The most significant decrease in urine osmolality was identified in the diving group with low and medium resistance to DG and OTE (reduction by 14,5 and 17,7 %, respectively). A significant increase in urine osmolality under the action of hyperbaric factors was defined in the diving group with low and medium resistance to NTE and HH (by 19,8 and 19,3 %).
DISCUSSION: The data obtained indicate the emergence of a new body hydration status during person’s staying in hyperbaric conditions. Body hydration status will be connected with its individual resistance to hyperbaric adverse factor effect. Thus, with the development of marked DG iso-osmotic (isotonic) hyperhydration is formed, with OTE hyperosmotic (hypertonic) hyperhydration occurs, with NTE and HH hypo-osmolar (hypotonic) hyperhydration develops.
CONCLUSION: The study showed a certain connection (correlation) between types of hyperhydration in the tissues of a diver’s body, mechanisms of occurrence, low and medium initial resistance to a particular hyperbaric factor. “Pressure diuresis” phenomenon (“diver diuresis”), that occurs in divers with high resistance to hyperbaric adverse factors, will be a normal body’s physiological response, aimed at eliminating hypervolemia and reduction in the volume of circulating plasma.

About the authors

D. P. Zverev

Military Medical Academy named after S.M. Kirov

Email: z.d.p@mail.ru
ORCID iD: 0000-0003-3333-6769
SPIN-code: 7570-9568

Dmitry P. Zverev – Cand. of Sci. (Med.), Associate Professor, Colonel of the Medical Service, Head of the Department Physiology 

194044, Saint Petersburg

Russian Federation

A. Yu. Shitov

Military Medical Academy named after S.M. Kirov

Author for correspondence.
Email: arseniyshitov@mail.ru
ORCID iD: 0000-0002-5716-0932
SPIN-code: 7390-1240

Arseniy Yu. Shitov – Cand. of Sci. (Med.), Honored Inventor of the Russian Federation, Senior lecturer of the Department Physiology 

194044, Saint Petersburg

Russian Federation

A. A. Myasnikov

Military Medical Academy named after S.M. Kirov

Email: a_mjasnikov@mail.ru
ORCID iD: 0000-0002-7427-0885
SPIN-code: 2590-0429

Alexey A. Myasnikov – Dr. of Sci. (Med.), Professor, Honored Worker of the Higher School of the Russian Federation, Professor of the Department Physiology 

194044, Saint Petersburg

Russian Federation

A. N. Andrusenko

Military Medical Academy named after S.M. Kirov

Email: an.a.an@mail.ru
ORCID iD: 0000-0001-7393-6000
SPIN-code: 6772-4452

Andrey N. Andrusenko – Cand. of Sci. (Med.), Lecturer of the Department Physiology 

194044, Saint Petersburg

Russian Federation

V. I. Chernov

Military Medical Academy named after S.M. Kirov

Email: chernov_61@mail.ru
ORCID iD: 0000-0002-8494-1929
SPIN-code: 4767-4001

Vasily I. Chernov – Cand. of Sci. (Med.), Associate Professor, Associate Professor of the Department Physiology 

194044, Saint Petersburg

Russian Federation

I. R. Klenkov

Military Medical Academy named after S.M. Kirov

Email: klen.ir@mail.ru
ORCID iD: 0000-0002-1465-1539
SPIN-code: 9827-8535

Ilyas R. Klenkov – Cand. of Sci. (Med.), Senior lecturer of the Department Physiology 

194044, Saint Petersburg

Russian Federation

Z. M. Israfilov

Military Medical Academy named after S.M. Kirov

Email: warag05@mail.ru
ORCID iD: 0000-0002-3524-7412
SPIN-code: 1619-6621

Zagir M. Israfilov – Adjunct of the Department Physiology 

194044, Saint Petersburg

Russian Federation

References

  1. Григорьев А.И., Николаев С.О., Орлов О.И., Семенов В.Ю., Перфильева Т.А. Влияние гипербарии на водно-солевой обмен // Бюллетень «Космическая биология и авиакосмическая медицина». 1985. № 2–3. C. 3–44
  2. Brubakk A.O., Ross J.A.S., Thom S.R. Saturation diving: Physiology and pathophysiology. Comprehensive Physiology, 2014, Vol. 4, No 3. pp. 1229–1272. doi: 10.1002/cphy.c130048
  3. Mrakic-Sposta S., Vezzoli A., Dellanoce C., D’alessandro F., Paganini M., Cialoni D., Bosco G. Change in oxidative stress biomarkers during 30 days in saturation dive: A pilot study. International Journal of Environmental Research and Public Health, 2020, Vol. 17, No 19, pp. 1–11. doi: 10.3390/ijerph17197118
  4. Носков В.Б. Коррекция уровня гидратации организма на различных этапах космического полета // Авиакосмическая и экологическая медицина. 2003. Т. 37, № 2. C. 19–22
  5. Vallee N., Desruelle A.V., Boussuges A., Rives S., Risso J.J., Dugrenot E., Guernec A., Guerrero F., Tardivel C., Martin J.C. Evidence of a hormonal reshuffle in the cecal metabolome fingerprint of a strain of rats resistant to decompression sickness. Scientific Reports, 2021, Vol. 11, No 1, pp. 3–17. doi: 10.1038/s41598-021-87952-y
  6. Случай тяжелой декомпрессионной болезни у водолаза из-за нарушения режима декомпрессии и водного баланса // Военно-медицинский журнал. 2017. Т. 338, № 6. C. 71
  7. Sundal E., Lygre S.H.L., Irgens Å., Troland K., Grønning M. Long-term neurological sequelae after decompression sickness in retired professional divers. Journal of the Neurological Sciences, 2022, Vol. 434, pp. 120181. doi: 10.1016/j.jns.2022.120181
  8. Благинин А.А., Жильцова И.И., Емельянов Ю.А. Вопросы декомпрессионной безопасности лётного состава // Военно-медицинский журнал. 2017. Т. 338, № 7. С. 42–45
  9. Голубев В.Н., Королёв Ю.Н., Мургаева Н.В., Стрельцова К.Г. Адаптивные реакции организма человека на воздействие гипоксии // Известия Российской Военно-медицинской академии. 2019. Т. 38, № 3. с. 178–182
  10. Семенцов В.Н., Иванов И.В. Функциональные тесты для профессионального отбора водолазов и кессонщиков // Известия Российской Военно-медицинской академии. 2019. Т. 38, № 3. C. 207–216
  11. Медведев Л.Г., Стаценко А.В., Апчел В.Я., Бакланов Д.В., Дмитрук В.И., Лупанов А.И. Механизм нарушений функций мозга при кислородном отравлении и азотном наркозе у водолазов и подводников // Вестник Российской Военно-медицинской академии. 2012. № 2 (38). C. 74–78
  12. Зверев Д.П., Мясников А.А., Шитов А.Ю., Чернов В.И., Андрусенко А.Н., Кленков И.Р., Исрафилов З.М. Применение пробы с водной нагрузкой у водолазов при декомпрессионном внутрисосудистом газообразовании для исследования функций почек // Известия Российской военно-медицинской академии. 2021. Т. 40, № S2. C. 79–85
  13. Зверев Д.П., Мясников А.А., Шитов А.Ю., Чернов В.И., Андрусенко А.Н., Кленков И.Р., Исрафилов З.М. Новые подходы в определении устойчивости водолазов к неблагоприятным факторам гипербарии // Известия Российской военно-медицинской академии. 2021. Т. 40, № S2. C. 74–79
  14. Зверев Д.П., Мясников А.А., Шитов А.Ю., Андрусенко А.Н., Чернов В.И., Исрафилов З.М., Кленков И.Р. Влияние факторов повышенного давления газовой среды на состояние водно-электролитного обмена организма при водолазных спусках // Военно-медицинский журнал. 2022. Т. 343, № 9. C. 49–60 doi: 10.52424/00269050_2022_343_9_49.
  15. Зубов Н.Н., Кувакин В.И. Методы статистического анализа данных в медицине и фармации / под общ. ред. Н. Н. Зубова. СПб.: «Литография Принт». 2017. 216 C.
  16. Zhang J.J., Liu C., Shen Y., Qian J., Liu W.W. Pathogenesis and prevention of central nervous system oxygen toxicity. Academic Journal of Second Military Medical University. 2021, Vol. 42, No 4, pp. 426–431 doi: 10.16781/j.0258-879x.2021.04.0426.
  17. Антонов В.Г., Жергеля С.Н., Карпищенко А.И., Минаева Л.В. Водно-электролитный обмен и его нарушения / под. ред. А.И. Карпищенко. М.: ГЭОТАР-Медиа. 2018. 208 C.
  18. Носков В.Б. Коррекция уровня гидратации организма на различных этапах космического полета // Авиакосмическая и экологическая медицина. 2003. Т. 37, № 2. C. 19–22
  19. Носков В.Б., Лукьянюк В.Ю. Влияние фармакологической гипогидратации на переносимость перегрузок // Авиакосмическая и экологическая медицина. 2003. Т. 37, № 6. C. 30–33
  20. Shykoff B.E., Lee R.L. Risks from breathing elevated oxygen. Aerospace Medicine and Human Performance, 2019, Vol. 90, No 12, p. 1041–1049. doi: 10.3357/AMHP.5393.2019
  21. Freiberger J.J., Derrick B.J., Natoli M.J., Akushevich I., Schinazi E.A., Parker C., Stolp B.W., Bennett P.B., Vann R.D., Dunworth S.A.S., Moon R.E. Assessment of the interaction of hyperbaric N2, CO2, and O2 on psychomotor performance in divers. Journal of Applied Physiology, 2016, Vol. 121, No 4, pp. 953–964. doi: 10.1152/japplphysiol.00534.2016.
  22. Мясников А.А. Кулешов В.И., Чернов В.И., Шитов А.Ю., Зверев Д.П. Питьевой режим водолазов и индивидуальная устойчивость организма к декомпрессионной болезни // Военно-медицинский журнал. 2007. Т. 328, № 3. C. 49–52

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies