NEURAL CONDUCTION AT TOURNIQUET TEST

Abstract

We review data available on short-term local ischemia on nerve conduction in humans; diagnostic value of this test and its significance in normal and pathological condition are evaluated. Different methods of local ischemia are reviewed; main trends of neuronal conduction changes in normal and pathological conditions are summarized. Are known experimental studies in which to assess of the reserve possibilities of the peripheral nervous system is used short-term influence of ischemia, so called tourniquet test, on the parameters of the conduct of pulse of the nerve, the excitability of axons. Most clinical and experimental studies of the effect of short-term neural ischemia devoted to the study of excitability of nerves. To investigate of the excitability of nerves used the method of «threshold tracking». However, the conventional method of determining of the neural conduction in clinical practice is the simplest, least expensive and also reflects of the resistance to local short-term compression of nerves in diabetes mellitus, acute inflammatory demyelinating polyneuropathy. Tourniquet test in the form of local short limb ischemia of the peripheral nerves in normal conditions leads to a natural reduction in neural conductivity and can be used as a method of standardization and regulation of neural conduction parameters of the peripheral nerves. The degree of reduction of neural conduction depends on the duration of the compression, place (shoulder, forearm), cuff width, age. Tourniquet test has a diagnostic informative in assessing of the reactivity of neural conduction, because the nerve fibers in various pathological conditions are resistant to local ischemia.

About the authors

A. V. Klimkin

Pediatric Research and Clinical Center for Infectious Diseases, Saint-Petersburg

Author for correspondence.
Email: emg.sonography@gmail.com
младший научный сотрудник отдела функциональных и лучевых методов диагностики «Научно-исследовательский институт детских инфекций ФМБА России» Russian Federation

V. B. Voitenkov

Pediatric Research and Clinical Center for Infectious Diseases, Saint-Petersburg

Email: vlad203@inbox.ru
научный сотрудник, кандидат медицинских наук, и. о. руководителя отдела функциональных и лучевых методов диагностики ФГБУ «Научно-исследовательский институт детских инфекций ФМБА России» Russian Federation

N. V. Skripchenko

Pediatric Research and Clinical Center for Infectious Diseases, Saint-Petersburg

Email: snv@niidi.ru

доктор медицинских наук, профессор, заслуженный деятель науки РФ, заместитель директора по научной работе ФГБУ «Научно-исследовательский институт детских инфекций ФМБА России» 

Russian Federation

References

  1. Самойлов В. О. Медицинская биофизика: учебник для вузов.— 3-е изд., испр. и доп.— СПб.: СпецЛит, 2013.— 591 с.: ил.
  2. Guyton C. A., Hall J. E. Guyton and Hall Textbook on Medical Physiology.— Twelfth ed.— Philadelphia: Saunders, 2011.— 1120 p.
  3. Akın O., Eker İ., Arslan M., Taşdemir S., Taşçılar M. E., Ulaş Ü. H., Yeşilkaya E., Ünay B. Association of nerve conduction impairment and insulin resistance in children with obesity // Childs Nerv. Syst.— 2016.— Nov; Vol. 32 (11).— Р. 2219–2224.
  4. Leote J., Pereira P., Valls-Sole J. Double peak sensory nerve action potentials to single stimuli in nerve conduction studies // Muscle Nerve.— 2016.— Nov 22.
  5. Kim J. G., Kim D., Seok H. Y., Kim Y., Yang K. S., Rhyu I. J., Kim B. J. A Method of Radial Nerve Length Measurement Based on Cadaveric Investigation // Arch. Phys. Med. Rehabil.— 2016.— Sep 6.
  6. Saffarian M. R., Condie N. C., Austin E. A., McCausland K. E., Andary M. T., Sylvain J. R., Mull I. R., Zemper E. D., Jannausch M. L. Comparison of Four Different Nerve Conduction Techniques of the Superficial Fibular Sensory Nerve // Muscle Nerve.— 2016.— Dec 28.
  7. Команцев В. Н., Заболотных В. А. Методические основы клинической электронейромиографии: рук. для врачей.— СПб.: Лань, 2001.— 349 с.: ил.
  8. Ehler E., Ridzoň P., Urban P. Ulnar nerve at the elbow — normative nerve conduction study // J. Brachial Plex. Peripher. Nerve Inj.— 2013.— Vol. 11. 8(1).— Р. 2.
  9. Garg R., Bansal N., Kaur H. Nerve conduction studies in the upper limb in the malwa region-normative data // J. Clin. Diagn. Res.— 2013.— Vol. 7, No. 2.— Р. 201–204.
  10. Kane N., Grocott L., Kandler R. Hyperventilation during electroencephalography: Safety and efficacy // Seizure.—2014.— Vol. 23, No. 2.— P. 129–134.
  11. Abramson D. I., Hlavova A., Rickert B. Effect of ischemia on median and ulnar motor nerve conduction velocities at various temperatures // Arch. Phys. Med. Rehabil.— 1970.— Vol. 51, No. 8.— Р. 463–470.
  12. Caruso G., Labianca O., Ferrannini E. Effect of ischaemia on sensory potentials of normal subjects of different ages // J. Neurol. Neurosurg. Psychiatry.— 1973.— Vol. 36, No. 3.— Р. 455–466.
  13. Fullerton P. M. The effect of ischaemia on nerve conduction in the carpal tunnel syndrome // J. Neurol. Neurosurg. Psychiatry.— 1963.— Vol. 26.— P. 385–397.
  14. Ikemoto T., Tani T., Taniguchi S. Effects of experimental focal compression on excitability of human median motor axons // Clin. Neurophysiol.— 2009.— Vol. 120, No. 2.— P. 342–347.
  15. Smith E. R., Shapiro G. L. Totally tourniquets. The facts & details about different types of tourniquets // JEMS.—2013.— No. 38, Vol. 11.— P. 48, 50, 52.
  16. Ma H., Kim I. The diagnostic assessment of hand elevation test in carpal tunnel syndrome // J. Korean Neurosurg. Soc.— 2012.— Vol. 52, No. 5.— Р. 472–475.
  17. Razek A. A., Shabana A. A., El Saied T. O., Alrefey N. Diffusion tensor imaging of mild-moderate carpal tunnel syndrome: correlation with nerve conduction study and clinical tests // Clin. Rheumatol.— 2016.— Nov 3.
  18. Климкин А. В., Войтенков В. Б., Скрипченко Н. В. Резистентность к ишемии двигательных аксонов у детей при серозном менингите и синдроме Гийена–Барре // Физиология человека.— 2015.— Т. 41, № 2.— С. 85–90.
  19. Hajas G., Kissova V., Tirpakova A. A 10-yr follow-up study for the detection of peripheral neuropathy in young patients with type 1 diabetes // Pediatr Diabetes.— 2016.— Dec; Vol. 17(8).— Р. 632–641
  20. Krishnan A. V., Phoon R. K., Pussell B. A. Ischaemia induces paradoxical changes in axonal excitability in end-stage kidney disease // Brain.— 2006.— Vol. 129, No. 6.— P. 1585–1592.
  21. Mogyoros I., Kiernan M. C., Burke D. Ischemic resistance of cutaneous afferents and motor axons in patients with amyotrophic lateral sclerosis // Muscle Nerve.— 1998.— Vol. 21, No. 12.— Р. 1692–700.
  22. Mittal P., Shenoy S., Sandhu J. S. Effect of different cuff widths on the motor nerve conduction of the median nerve: an experimental study // J. Orthop. Surg. Res.— 2008.— No. 9, vol. 3.— Р. 1.
  23. Hofmeijer J., Franssen H., van Schelven L. J. Why are sensory axons more vulnerable for ischemia than motor axons? // PLoS One.— 2013.— Jun 20; vol. 8(6).— e67113.
  24. Ruess J. M., Abramson D. I., Wasserman R. R. Motor nerve conduction velocity in normal and diabetic subjects: effect of repeated periods of ischemia // Arch. Phys. Med. Rehabil.— 1973.— Vol. 54, No. 5.— Р. 221–223.
  25. Nielsen V. K., Kardel T. Decremental conduction in normal human nerves subjected to ischaemia? // Acta Physiologica Scandinavica.— 1974.— Vol. 92, No. 2.— Р. 249–262.
  26. Chiao F. B., Chen J., Lesser J. B. Single-cuff forearm tourniquet in intravenous regional anaesthesia results in less pain and fewer sedation requirements than upper arm tourniquet // Br. J. Anaesth.— 2013.— Vol. 111, No. 2.— Р. 271–275.
  27. Fowler T. J., Danta G., Gilliatt R. W. Recovery of nerve conduction after a pneumatic tourniquet: observations on the hind-limb of the baboon // J. Neurol. Neurosurg. Psychiatry.— 1972.— Vol. 35, No. 5.— Р. 638–647.
  28. Ochoa J., Fowler T. J., Gilliatt R. W. Anatomical changes in peripheral nerves compressed by a pneumatic tourniquet // J. Anat.— 1972.— Vol. 113, No. 3.— Р. 433–455.
  29. Bostock H., Cikurel K., Burke D. Threshold tracking techniques in the study of human peripheral nerve // Muscle Nerve.— 1998.— Vol. 21, No. 2.— Р. 137–158.
  30. Stecker M. M., Stevenson M. Effect of glucose concentration on peripheral nerve and its response to anoxia // Muscle Nerve.— 2014.— Vol. 49, No. 3.— Р. 370–377.
  31. Maurer K., Bostock H., Koltzenburg M. Protons regulate the excitability properties of rat myelinated sensory axons in vitro through block of persistent sodium currents // J. Peripher. Nerv. Syst.— 2012.— Vol. 17, No. 1.— Р. 102–111.
  32. Yates S. K., Hurst L. N., Brown W. F. The pathogenesis of pneumatic tourniquet paralysis in man // J. Neurol. Neurosurg. Psychiatry.— 1981.— Vol. 44, No. 9.— Р. 759–767.
  33. López-Alburquerque T. Effect of ischaemia on somatosensory evoked potentials in diabetic patients // J. Neurol. Neurosurg. Psychiatry.— 1987.— Vol. 50, No. 4.— P. 428–434.
  34. Chroni E., Veltsista D., Papapaulou C., Trachani E. Generation Of Repeater F Waves In Healthy Subjects // J. Clin. Neurophysiol.— 2016.— Nov 17.
  35. Команцев В. Н., Сорокина М. Н., Скрипченко Н. В. Нарушение возбудимости аксона периферического мотонейрона при инфекционном поражении нервной системы у детей // Материалы XVII Съезда физиологов России, г. Ростов-на-Дону, 14–18 сент. 1998 г.— Ростов-на-Дону, 1998.— С. 495.
  36. Гришина Д. А. Синдром Гийена–Барре: катамнестическое клинико-нейрофизиологическое исследование: автореф. дис. … канд. мед. наук: 14.01.11; 14.03.03 / Гришина Дарья Александровна; [НЦ неврологии РАМН].— М., 2013.— 26 с.: цв. ил.
  37. Левин О. С. Полинейропатии. Клиническое руководство.— М.: Мед. информ. агентство, 2005.— 496 с.: ил., табл.
  38. Одинак М. М., Живолупов С. А. Заболевания и травмы периферической нервной системы (обобщение клинического и экспериментального опыта): рук. для врачей.— СПб.: СпецЛит, 2009.— 366., [1] с., [8] л. цв. ил.: ил.
  39. Preston D. C., Shapiro B. E. Electromyography and neuromuscular disorders.— London: Saunders, 2013.— 664 p.
  40. Louise W., Ghawché F., Larre Ph., Neau J.-Ph., Mathis S., Fournier E. Guillain-Barré Syndrome (42 Cases) Occurring During a Zika Virus Outbreak in French Polynesia // Medicine (Baltimore).— 2016.— Apr; Vol. 95(14).— Р. e3257.
  41. Paploski I. A. D., Prates A. P. P. B., Cardoso C. W. et al. Time Lags between Exanthematous Illness Attributed to Zika Virus, Guillain-Barré Syndrome, and Microcephaly, Salvador, Brazil // Emerg. Infect. Dis.— 2016.— Aug; Vol. 22 (8).— Р. 1438–1444.
  42. Dirlikov Е., Kniss К., Major Ch. et al. Guillain-Barré Syndrome and Healthcare Needs during Zika Virus Transmission, Puerto Rico, 2016 // Emerg. Infect. Dis.— 2017.— Jan; Vol. 23 (1).— Р. 134–136.
  43. Nirmal K., Jaya L., Rudolf H. T., Guenael R. M. Rodier Detecting Guillain-Barré syndrome caused by Zika virus using systems developed for polio surveillance // Bull World Health Organ.— 2016.— Sep. 1; 94(9).— Р. 705–708.
  44. Lee E. B., Lee Y. Y., Lee J. M., Son S. M., Hwang S. K., Kwon S., Kim S. Y. Clinical importance of F-waves as a prognostic factor in Guillain-Barré syndrome in children // Korean J Pediatr.— 2016.— Jun; Vol. 59(6).— Р. 271–275.
  45. Adam T. C., Michelle T. B., Roberta P., Beverley J. P., David N. D. Acute flaccid paralysis incidence and Zika virus surveillance, Pacific Islands // Bull World Health Organ.— 2017.— Jan 1; Vol. 95 (1).— Р. 69–75.
  46. Скрипченко Н. В., Команцев В. Н. Инфекционные заболевания периферической нервной системы у детей: рук. для врачей [Федер. прогр. книгоизд. России].— М.: Медицина, 2006.— 558, [1] c.: ил., цв. ил., портр.
  47. Pi-Lien Hung, Wen-Neng Chang, Li-Tung Huang et al. A clinical and electrophysiologic survey of childhood Guillain-Barre syndrome // Pediatric neurology.— 2004.— Vol. 30, № 2.— Р. 86–91.
  48. Walgaard C., Lingsma H. F., Ruts L., van Doorn P. A., Steyerberg E. W., Jacobs B. C. Early recognition of poor prognosis in Guillain-Barré syndrome // Neurology.— 2011.— Mar 15; Vol. 76 (11).— Р. 968–975.
  49. Koo Y. S., Shin H. Y., Kim J. K., Nam T. S., Shin K. J., Bae J. S., Suh B. C., Oh J., Yoon B. A., Kim B. J. Early Elect-rodiagnostic Features of Upper Extremity Sensory Nerves Can Differentiate Axonal Guillain-Barré Syndrome from Acute Inflammatory Demyelinating Polyneuropathy // J. Clin. Neurol.— 2016.— Oct; Vol. 12 (4).— Р. 495–501.
  50. Parry G. J., Linn D. J. Transient focal conduction block following experimental occlusion of the vasa nervorum // Muscle Nerve.— 1986.— Vol. 9, No. 4.— Р. 345–348.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies