Аssessment of admissibility of 100-day human sealing in normobariс gaseous environments, increasing fire safety of habitated hermoobjects

Cover Page

Cite item

Full Text

Abstract

OBGECTIVE: the assessment of admissibility of a human long-term stay in regulated normobaric hypoxic gaseous environments, increasing fire safety of habituated hermoobjects.

MATERIALS AND METHODS: Men aged 25–32 (5 people) and 53 (1 person) were surveyed. Inside the test bench a gaseous environment was created with 19–18% vol. oxygen content — a continued stay room, or 17–16% vol.— periodical stay one (4 hours per day). The duration of the tests was 100 days. Once in 10 days there was the «regulation» (fast nitrogen input) of the gaseous environment with the decrease in oxygen concentration up to 15–12% vol., while the volunteers being in such conditions for 2 hours.

RESULTS: During the whole period of 100-day sealing none of the volunteers experienced signs of somatic and mental health disorders; all the volunteers completed the testing program successfully.

CONCLUSION: The results justify the admissibility of applying the technology of regulated normobaric hypoxic gaseous environments in the developed modes to increase fire safety of habituated hermoobjects, particularly in submarines.

About the authors

A. O. Ivanov

The Naval Academy after N. G. Kuzhetsov

Author for correspondence.
Email: ivanoff65@mail.ru
ORCID iD: 0000-0002-8364-9854

Andrey O. Ivanov — Dr. of Sci. (Med.), Professor, Senior Researcher of the Research Department (Ship habitability and medical support of the Navy personnel) Scientific Research Institute of Shipbuilding and Armaments of the Navy of the MTSC

197101, St. Petersburg, st. Chapaeva, 30

Phone: 8 (911) 733-73-69

SPIN-code 5176–2698

Russian Federation

V. A. Petrov

The Association of Developers and Manufacturers of Monitoring Systems

Email: vas3188@yandex.ru

Vasiliy A. Petrov — Cand. of Sci. (Techn.), Executive director

Russia, 199034, Saint-Petersburg, 17 line of Basil Island, 4–6

Russian Federation

A. Ye. Yeroshenko

The Rostov State Medical University

Email: andre-zdrav@mail.ru
ORCID iD: 0000-0002-6767-7302

Andrey Yu. Eroshenko — Cand. of Sci. (Med.), Associate Professor of the Department of Life Safety and Disaster Medicine

344022, Rostov-on-Don, Nakhichevansky st., 29

Рhone: 8 (918) 558-12-28

SPIN-code 4289–9063

Russian Federation

V. F. Belyaev

The Naval Academy after N. G. Kuzhetsov

Email: viktme@mail.ru

Viktor F. Belyaev — Cand. of Sci. (Med.), Senior Researcher of the Research Department (Ship habitability and medical support of the Navy personnel) Scientific Research Institute of Shipbuilding and Armaments of the Navy of the MTSC

197101, St. Petersburg, st. Chapaeva, 30

Phone: +7 (911) 244-80-40

SPIN 1225–7174

Russian Federation

Yu. E. Barachevsky

The Northern State Medical University

Email: barje1@yandex.ru
ORCID iD: 0000-0002-5299-4786

Yuriy E. Barachevskiy — Dr. of Sci. (Med.), Professor, Head of the Department of Mobilization Training of Public Health and Disaster Medicine

163000, Arkhangelsk, Troitskiy av., 51

Рhone: 8 (911) 877-23-93

SPIN-code 1253–4389

Russian Federation

References

  1. Choudhury R. Hypoxia and hyperbaric oxygen therapy: a review // Internat. J. of General Med. 2018. Vol. 11. P. 431–442.
  2. Tymko M.M., Hoiland R.L., Tremblay J.C. et al. The 2018 Global Research Expedition on Altitude Related Chronic Health (Global REACH) to Cerro de Pasco, Peru: an Experimental Overview // Experimental Physiology. 2021. Vol. 106. P. 86–103.
  3. Treml B., Kleinsasser A., Hell T. et al. Carry-Over Quality of Pre-acclimatization to Altitude Elicited by Intermittent Hypoxia: A Participant-Blinded, Randomized Controlled Trial on Antedated Acclimatization to Altitude // J. Front Physiol. 2020. Vol. 29, No. 11. P. 531. doi: 10.3389/fphys.2020.00531.
  4. Karayigit R., Eser M.С., Sahin F.N. et al. The Acute Effects of Normobaric Hypoxia on Strength, Muscular Endurance and Cognitive Function: Influence of Dose and Sex // Biology (Basel). 2022. Vol. 11, No. 2. P. 309.
  5. Zahodyakina K.Yu., Kuzmin A.V., Kovaleva Yu.A. Combined physical and hypoxic exercises — a perspective drugfree method for increasing physical working capacity // Human. Sport. Medicine. 2021. Vol. 21, No. 1. P. 124–131.
  6. Hamlin M.J., Hellemans J. Effect of intermittent normobaric hypoxic exposure at rest on haematological, physiological, and performance parameters in multi-sport athletes // J. Sports Sci. 2007. Vol. 25, No. 4. P. 431–441. doi: 10.1080/02640410600718129.
  7. Mandel’ I.A., Podoksenov A.Yu., Sukhodolo I.V. et al. Myocardial Protection against Ischemic and Reperfusion Injuries (Experimental Study) // Bul. Experim. Biol. Med. 2017. Vol. 164. P. 21–25.
  8. Xu K., Lamanna J.C. Short-term hypoxic preconditioning improved survival following cardiac arrest and resuscitation in rats // Adv. Exp. Med. Biol. 2014. Vol. 812. P. 309–315.
  9. Любимов А.В., Черкашин Д.В., Аланичев А.Е. Перспективы кардиопротекции с помощью ишемического прекондиционирования: гипоксия-индуцируемый фактор 1 — возможный молекулярный механизм и мишень для фармакотерапии // Кардиоваскулярная терапия и профилактика. 2017. Т. 16, № 6. с. 139–147.
  10. Angerer P., Nowak D. Working in permanent hypoxia for fire protection-impact on health // Int. Arch. Occup. Environ. Health. 2003. Vol. 76, No. 2. P. 87–102. doi: 10.1007/s00420-002-0394-5.
  11. Безкишкий Э.Н., Иванов А.О., Петров В.А. и др. Работоспособность человека при периодическом пребывании в гипоксических воздушных средах, снижающих пожароопасность гермобъектов // Экология человека. 2018. № 9. с. 4–12.
  12. Иванов А.О., Беляев В.Ф., Ерошенко А.Ю. и др. Сравнительная характеристика физиологической адаптации человека при различных режимах пребывания в нормобарических гипоксических средах, снижающих пожароопасность объектов ВМФ // Характеристика физиологической адаптации человека при различных режимах пребывания в нормобарических гипоксических средах, снижающих пожароопасность объектов ВМФ // Морская медицина. 2020. Т. 6, № 2. с. 49–58.
  13. Linde L., Gustafsson C., Ornhagen H. Effects of reduced oxygen partial pressure on cognitive performance in confined spaces // Military Psychol. 1997. Vol. 9 (2). P. 151–168. doi: 10.1207/s15327876mp0902_3.
  14. Ищенко А.Д., Роенко В.В., Малыгин И.Г. Пожарная опасность и особенности тушения пожаров энергетических установок и помещений судов // Морские интеллектуальные технологии. 2018. Т. 1, № 39 (1). с. 89–94.
  15. Петров В.А., Иванов А.О. Перспективные пути повышения пожарной безопасности энергонасыщенных обитаемых герметичных объектов // Безопасность жизнедеятельности. 2018. № 10. с. 37–39.
  16. Williams Th.B., Corbett J., McMorris T. et al. Cognitive performance is associated with cerebral oxygenation and peripheral oxygen saturation, but not plasma catecholamines, during graded normobaric hypoxia // J. Exp. Physiol. 2019. Vol. 104, No. 9. P. 1384–1397. doi: 10.1113/EP087647.
  17. Kim Chul-Ho, Edward J. R., Seo Y. et al. Low intensity exercise does not impact cognitive function during exposure to normobaric hypoxia // J. Physiol. Behav. 2015. Vol. 151. P. 24–28. doi: 10.1016/j.physbeh.2015.07.003.
  18. Lefferts W.K., Babcock M.C., Tiss M.J. et al. Effect of hypoxia on cerebrovascular and cognitive function during moderate intensity exercise // J. Physiol Behav. 2016. Vol. 165. P. 108–118. doi: 10.1016/j.physbeh.2016.07.003.
  19. Петров В.А., Майоров И.В., Янцевич П.В., Иванов А.О. Стенд-модель судовых помещений для моделирования обитаемости и режимов жизнедеятельности «МОРЖ» и его инженерное обеспечение // Вопросы оборонной техники. 2016. Вып. 7–8 (97–98). с. 104–110.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies