Epidemiology of cardiovascular diseases and risk factors for their development in the Arctic countries

Cover Page

Cite item

Full Text

Abstract

INTRODUCTION. Severe climatic conditions, state of the environment, water and air quality and other factors affect human health in the Arctic region, including cardiovascular system. The study of these factors is necessary to create measures to prevent the development of diseases.
OBJECTIVE. Analyze morbidity and mortality from cardiovascular diseases in the Arctic countries as well as risk factors of their development.
MATERIALS AND METHODS. The study analyzed PubMed, Scopus, Web of Science and Google Scholar database over 25 years from 1998 to 2023. The search terms included the keywords: cardiovascular diseases, climate, risk factors, adaptation, morbidity, mortality, Arctic.
RESULTS. It was found that primary morbidity exceeds the all-Russian value 1,4 times in the Arctic region. Mortality by main causes of death for 2015–2019 over a 5-year period tends to decrease. There are similar data in other Arctic countries, including cardiovascular diseases. Mortality rate among Arctic indigenous groups is not the same.
DISCUSSION. Scientists consider the effect of extremely low temperatures and the body’s adaptive capacities, toxic effects of harmful chemicals and insufficiency of vitamin D due to reduced sun exposure to be among health hazards in Arctic, including cardiovascular system. Cardiovascular diseases were noted to be seasonal.
CONCLUSION. Arctic public health depends on many reasons, including the body’s adaptation to extreme habitat conditions, social conditions, ecology, lifestyle and nutrition, availability of medical care and drug provision.

About the authors

N. V. Orlova

Pirogov Russian National Research Medical University

Author for correspondence.
Email: vrach315@yandex.ru
ORCID iD: 0000-0002-4293-3285
SPIN-code: 8775-1299

Natalia V. Orlova - Dr. of Sci. (Med.), Professor

1 Ostrovityanova str., Moscow, 117997

Russian Federation

S. A. Sapozhnikov

Pirogov Russian National Research Medical University

Email: sas1387@mail.ru
SPIN-code: 9361-5634

Stepan A. Sapozhnikov - candidate of the Department of faculty therapy

1 Ostrovityanova str., Moscow, 117997

Russian Federation

References

  1. Климова Т.М., Софронова С.И., Кузьмина А.А. и др. Динамика медико-демографических показателей и особенности смертности населения в арктической зоне республики Саха (Якутия) за 2000-2019 гг. // Якутский медицинский журнал. 2022. № 2. С. 76–81. doi: 10.25789/YMJ.2022.78.20.
  2. Bundgaard J.S., Jørgensen M.E., Andersen K. Dyslipidemia and the preventive potential in the Greenlandic population. Atheroscler Plus, 2022, Vol. 51, pp. 22–27. doi: 10.1016/j.athplu.2022.12.003.
  3. Rodríguez J., Willmes C., Mateos A. Shivering in the Pleistocene. Human adaptations to cold exposure in Western Europe from MIS 14 to MIS 11. J Hum Evol., 2021, Vol. 153, P. 102966. doi: 10.1016/j.jhevol.2021.102966.
  4. Schraer C.D., Adler A.I., Mayer A.M., Halderson K.R., Trimble B.A. Diabetes complications and mortality among Alaska Natives: 8 years of observation. Diabetes Care, 1997, Vol. 20, № 3, pp. 314–321. doi: 10.2337/diacare.20.3.314.
  5. Brändström H. Accidental cold-related injury leading to hospitalization in northern Sweden: an eight-year retrospective analysis. Scand J. Trauma Resusc Emerg Med., 2014, Vol. 26, № 6. doi: 10.1186/1757-7241-22-6.
  6. Chau P.H., Wong M., Woo J. Challenge to long term care for the elderly: cold weather impacts institutional population more than community-dwelling population. J Am Med Dir Assoc., 2012, Vol. 13, № 9, pp. 7887–7893. doi: 10.1016/j.jamda.2012.08.007.
  7. Phu Pin S., Golmard J.L. Excess winter mortality in France: influence of temperature, influenza like illness, and residential care status. J Am Med Dir Assoc., 2012, Vol. 13, № 3, P. 309, P. e1-307. doi: 10.1016/j.jamda.2011.06.005.
  8. Nunes AR. The contribution of assets to adaptation to extreme temperatures among older adults. PLoS One. 2018, Vol. 13, № 11 P. e0208121. doi: 10.1371/journal.pone.0208121.
  9. Howden-Chapman P.Effect of insulating existing houses on health inequality: cluster randomised study in the community. BMJ, 2007, Vol. 334, № 7591, P. 460. doi: 10.1136/bmj.39070.573032.80.
  10. Bhaskaran K., Hajat S. Effects of ambient temperature on the incidence of myocardial infarction. Heart, 2009, Vol. 95, № 21, pp.1760–1769. doi: 10.1136/hrt.2009.175000.
  11. Medina-Ramón M., Zanobetti A. Extreme temperatures and mortality: assessing effect modification by personal characteristics and specific cause of death in a multi-city case-only analysis. Environ Health Perspect, 2006, Vol. 114, № 9, pp. 1331–1336. doi: 10.1289/ehp.9074.
  12. von Klot S., Zanobetti A. Influenza epidemics, seasonality, and the effects of cold weather on cardiac mortality. Environ Health, 2012, Vol. 1, № 11, P. 74. doi: 10.1186/1476-069X-11-74.
  13. Madrigano J., Mittleman M.A. Temperature, myocardial infarction, and mortality: effect modification by individualand area-level characteristics. Epidemiology, 2013, Vol. 24, № 3, pp. 439–446. doi: 10.1097/EDE.0b013e3182878397.
  14. Kotecki P., Więckowska B., Stawińska-Witoszyńska B. The Impact of Meteorological Parameters and Seasonal Changes on Reporting Patients with Selected Cardiovascular Diseases to Hospital Emergency Departments: A Pilot Study. Int J Environ Res Public Health. 2023, Vol. 20, № 6, P. 4838. doi: 10.3390/ijerph20064838.
  15. Alahmad B., Khraishah H., Royé D. Associations Between Extreme Temperatures and Cardiovascular Cause- Specific Mortality: Results From 27 Countries. Circulation. 2023, Vol. 147, № 1, pp. 35–46. doi: 10.1161/CIRCULATIONAHA.122.061832.
  16. Åström D.O., Forsberg B., Edvinsson S., Rocklöv J. Acute fatal effects of short-lasting extreme temperatures in Stockholm, Sweden: evidence across a century of change. Epidemiology. 2013 Nov;24(6):820-9. doi: 10.1097/01.ede.0000434530.62353.0b.
  17. Chen H., Zhang X. Influences of temperature and humidity on cardiovascular disease among adults 65 years and older in China. Front Public Health, 2023, Vol. 10, P. 1079722. doi: 10.3389/fpubh.2022.1079722.
  18. Chen R., Wang C. Both low and high temperature may increase the risk of stroke mortality. Neurology, 2013, Vol. 81, № 12, pp. 1064–1070. doi: 10.1212/WNL.0b013e3182a4a43c.
  19. Ma W., Yang C. The impact of the 2008 cold spell on mortality in Shanghai, China. Int J Biometeorol. 2013, Vol. 57, № 1, pp. 179–184. doi: 10.1007/s00484-012-0545-7.
  20. Xu R., Shi C., Wei J., Lu W., Li Y., Liu T., Wang Y., Zhou Y., Chen G., Sun H., Liu Y. Cause-specific cardiovascular disease mortality attributable to ambient temperature: A time-stratified case-crossover study in Jiangsu province, China. Ecotoxicol Environ Saf., 2022, Vol. 236, P. 113498. doi: 10.1016/j.ecoenv.2022.113498.
  21. Ye X., Wolff R. Ambient temperature and morbidity: a review of epidemiological evidence. Environ Health Perspect, 2012, Vol. 120, № 1, pp. 19–28. doi: 10.1289/ehp.1003198.
  22. Ma W, Xu X. Impact of extreme temperature on hospital admission in Shanghai, China. Sci Total Environ, 2011, Vol. 409, № 19, pp. 3634–3637. doi: 10.1016/j.scitotenv.2011.06.042.
  23. Kolb S., Radon K. The short-term influence of weather on daily mortality in congestive heart failure. Arch Environ Occup Health, 2007, Vol. 62, № 4, pp. 169–176. doi: 10.3200/AEOH.62.4.169-176.
  24. Qiu H., Yu I.T. Is greater temperature change within a day associated with increased emergency hospital admissions for heart failure? Circ Heart Fail, 2013, Vol. 6, № 5, pp. 930–935. doi: 10.1161/CIRCHEARTFAILURE.113.000360.
  25. Stergiou G.S., Palatini P., Modesti P.A. Seasonal variation in blood pressure: Evidence, consensus and recommendations for clinical practice. Consensus statement by the European Society of Hypertension Working Group on Blood Pressure Monitoring and Cardiovascular Variability. J Hypertens, 2020, Vol. 38, № 7, pp. 1235–1243. doi: 10.1097/HJH.0000000000002341.
  26. Narita K., Hoshide S., Kario K. Seasonal variation in blood pressure: current evidence and recommendations for hypertension management. Hypertens Res. 2021, Vol. 44, № 11, pp. 1363–1372. doi: 10.1038/s41440-021-00732-z.
  27. Halonen J.I., Zanobetti A. Relationship between outdoor temperature and blood pressure. Occup Environ Med., 2011, Vol. 68, № 4, pp. 296–301. doi: 10.1136/oem.2010.056507.
  28. Alpérovitch A., Lacombe J.M. Relationship between blood pressure and outdoor temperature in a large sample of elderly individuals: the Three-City study. Arch Intern Med. 2009, Vol. 169, № 1, pp. 75–80. doi: 10.1001/archinternmed.2008.512.
  29. Kimura T., Senda S. Seasonal blood pressure variation and its relationship to environmental temperature in healthy elderly Japanese studied by home measurements. Clin Exp Hypertens., 2010, Vol. 32, № 1, pp. 8–12. doi: 10.3109/10641960902929479.
  30. Cheng T.O. Myocardial infarction and the weather: a significant positive correlation between the onset of heart infarct and 28 KHz atmospherics--a pilot study. Clin Cardiol., 1985, Vol. 8, № 10, pp. 510. doi: 10.1002/clc.4960081002.
  31. Xin M., Zhang S., Zhao L., Jin X., Kim W., Cheng X.W. Circadian and seasonal variation in onset of acute myocardial infarction. Medicine (Baltimore). 2022, Vol. 101, № 28, e29839. doi: 10.1097/MD.0000000000029839
  32. Ruhenstroth-Bauer G., Baumer H. Myocardial infarction and the weather: a significant positive correlation between the onset of heart infarct and 28 KHz atmospherics--a pilot study. Clin Cardiol., 1985, Vol. 8, № 3, pp. 149–151. doi: 10.1002/clc.4960080305.
  33. Mohammad M.A., Koul S., Rylance R., Fröbert O., Alfredsson J., Sahlén A., Witt N., Jernberg T., Muller J., Erlinge D. Association of Weather With Day-to-Day Incidence of Myocardial Infarction: A SWEDEHEART Nationwide Observational Study. JAMA Cardiol., 2018, Vol. 11, № 3, 1081–1089. doi: 10.1001/jamacardio.2018.3466.
  34. Hu X.F., Laird B.D., Chan H.M. Mercury diminishes the cardiovascular protective effect of omega-3 polyunsaturated fatty acids in the modern diet of Inuit in Canada. Environ Res. 2017, Vol. 152, pp. 470–477. doi: 10.1016/j.envres.2016.06.001.
  35. Crimmins, A., Balbus J., J.L USGCRP. Impacts of Climate Change on Human Health in the United States: A Scientific Assessment. Eds. U.S.. Global Change Research Program, Washington, DC, 2016, 312 pp. doi: dx. doi.org/10.7930/J0R49NQX.
  36. Peiris A.N., Jaroudi S., Gavin M. Hypothermia. JAMA, 2018, Vol. 319, № 12, pp. 1290. doi: 10.1001/jama.2018.0749.
  37. Benmarhnia T. Vulnerability to heat-related mortality: a systematic review, meta-analysis, and meta-regression analysis. Epidemiology, 2015, Vol. 26, № 6, pp. 781–793. doi:10.1097/ EDE.0000000000000375.
  38. Basu R. High ambient temperature and mortality: a review of epidemiologic studies from 2001 to 2008. Environ Health. 2009, Vol.16, № 8, pp. 40. doi: 10.1186/1476-069X-8-40.
  39. Taylor N. A. S. Ethnic differences in thermoregulation: Genotypic versus phenotypic heat adaptation. Journal of Thermal Biology. 2006, Vol. 31, № 1, 90–104. doi: 10.1016/j.jtherbio.2005.11.007.
  40. Argacha J.F., Bourdrel T., van de Borne P. Ecology of the cardiovascular system: A focus on air-related environmental factors. Trends Cardiovasc Med. 2018, 28(2):112-126. doi: 10.1016/j.tcm.2017.07.013.
  41. Tang L.L., Yang X., Yu S.Q. Aldosterone-stimulated endothelial epithelial sodium channel (EnNaC) plays a role in cold exposure-induced hypertension in rats. Front Pharmacol. 2022, 13:970812. doi: 10.3389/fphar.2022.970812.
  42. Keenan K., Hoffman M., Dullen K., O’Brien K.M. Molecular drivers of mitochondrial membrane proliferation in response to cold acclimation in threespine stickleback. Comp Biochem Physiol A Mol Integr Physiol. 2017, Vol. 203, pp. 109–114. doi: 10.1016/j.cbpa.2016.09.001.
  43. Gullah M.I., Uwaifo G.I. Does vitamin d deficiency cause hypertension? Current evidence from clinical studies and potential mechanisms. Int J Endocrinol. 2010. Vol. 2010. P. 579640. doi: 10.1155/2010/579640.
  44. Ahmadieh H., Arabi A. Association between vitamin D and cardiovascular health: Myth or Fact? A narrative review of the evidence. Womens Health (Lond). 2023 Jan-Dec;19:17455057231158222. doi: 10.1177/17455057231158222.
  45. Krause R., Bühring M. Ultraviolet B and blood pressure. Lancet. 1998, Vol. 29, № 352, pp. 709–710. doi: 10.1016/S0140-6736(05)60827-6.
  46. Pfeifer M., Begerow B. Effects of a short-term vitamin D(3) and calcium supplementation on blood pressure and parathyroid hormone levels in elderly women. J Clin Endocrinol Metab. 2001, Vol. 86, № 4, pp. 1633–1637. doi: 10.1210/jcem.86.4.7393.
  47. Li Y.C., Qiao G. Vitamin D: a negative endocrine regulator of the renin-angiotensin system and blood pressure. J Steroid Biochem Mol Biol. 2004, Vol. 89–90, № 1-5. P. 387-392. doi: 10.1016/j.jsbmb.2004.03.004.
  48. Ziegelasch N., Vogel M., Siekmeyer W., Billing H., Dähnert I., Kiess W. Seasonal variation of blood pressure in children. Pediatr Nephrol. 2021, 36(8):2257-2263. doi: 10.1007/s00467-020-04823-w. Epub 2020 Nov 19.
  49. Wittert G.A., Or H.K. Vasopressin, corticotrophin-releasing factor, and pituitary adrenal responses to acute cold stress in normal humans. J Clin Endocrinol Metab. 1992. Vol. 75, № 3. P. 750-755. doi: 10.1210/jcem.75.3.1517364.
  50. Hiramatsu K., Yamada T., Katakura M. Acute effects of cold on blood pressure, renin-angiotensin-aldosterone system, catecholamines and adrenal steroids in man. Clin Exp Pharmacol Physiol. 1984. Vol. 11, № 2. P. 171-179. doi: 10.1111/j.1440-1681.1984.tb00254.x.
  51. Kuzmenko N.V., Shchegolev B.F. Dependence of Seasonal Dynamics in Healthy People’s Circulating Lipids and Carbohydrates on Regional Climate: Meta-Analysis. Indian J Clin Biochem. 2022, 37(4):381-398. doi: 10.1007/s12291-022-01064-6.
  52. Blüher M., Hentschel B. Influence of dietary intake and physical activity on annual rhythm of human blood cholesterol concentrations. Chronobiol Int. 2001. Vol. 18, № 3. P. 541-557. doi: 10.1081/cbi-100103975.
  53. Garriga A., Sempere-Rubio N., Molina-Prados M.J., Faubel R. Impact of Seasonality on Physical Activity: A Systematic Review. Int J Environ Res Public Health. 2021 Dec 21;19(1):2. doi: 10.3390/ijerph19010002.
  54. Yang B.Y., Qian Z., Howard S.W., Vaughn M.G., Fan S.J., Liu K.K., Dong G.H. Global association between ambient air pollution and blood pressure: A systematic review and meta-analysis. Environ Pollut, 2018, Vol. 235, pp. 576–588. doi: 10.1016/j.envpol.2018.01.001
  55. Brook R.D., Brook J.R. Inhalation of fine particulate air pollution and ozone causes acute arterial vasoconstriction in healthy adults. Circulation. 2002, Vol. 105, № 13, pp. 1534–1536. doi: 10.1161/01.cir.0000013838.94747.64.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Orlova N.V., Sapozhnikov S.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies