Application of Stellar invasive telemetry system in the study of liquid breathing technology in hyperbaric stand

Cover Page

Cite item

Full Text

Abstract

OBJECTIVE: To study specific features of the invasive telemetry system Stellar in implementing liquid breathing technology under excessive water pressure.
MATERIALS AND METHODS: The study of liquid breathing in hyperbariс conditions was carried out on the hyperbaric stand, providing a simulated immersion/emersion of a laboratory animal up to a depth of 1500 m. Dynamic monitoring of key indicators of the animal’s body functional systems was performed with the patient monitor Dixon Storm 5770 Vet. During bench tests, the frequency of the laboratory animal’s independent breathing, the core body temperature (Тº С), heart rate (HR), electrocardiopraphic research data through invasive telemetry Stellar were recorded in real time.
RESULTS: Before the bench tests the invasive telemetry system Stellar was implanted in the body of the laboratory animal. The process of simulated immersion/emersion of laboratory animals on the hyperbaric stand was 390 sec. at a total immersion time 570 sec. During the bench tests the laboratory animals experienced hypothermia with a rectal temperature 32,1 º С, their breathing after decompression was registered at the level of 28 breaths /min. Bradycardia was recorded at a level of 66-70 beats/min after extracting the laboratory animal from the hyperbaric stand. Under decompression the vast majority of the laboratory animals showed full restoration of the sinus rhythm. At the same time, restoration of the rhythm was not recorded with 2 laboratory animals with ST-segment elevation and depression, provoked by myocardial hypoxia.
DISCUSSION: Under different modes of barometric pressure during liquid breathing on the hyperbaric stand the laboratory animals experienced hypothermia, accompanied by transient ischemic changes in the myocardium, determined by immersion length and depth. Liquid respiratory desaturation under ultra-fast decompression revealed inversely proportional dependence of external respiration function on the basic characteristics of the external environment.
CONCLUSION: The expedience of applying the test hyperbaric stand, which allows to simulate high hydrostatic pressure for imitating immersion/emersion of laboratory animals when studying liquid breathing technology. The bench tests attested indispensability of applying the invasive telemetry system Stellar for monitoring functional parameters of laboratory animals, measuring peculiarities of body’s adaptation in extreme water conditions. Liquid respiratory desaturation under ultra-fast decompression revealed inversely proportional dependence of external respiration function on the basic characteristics of the external environment. Systematic empirical data indicate potential benefit from the invasive telemetry system Stellar in studying liquid breathing under the conditions of hyperbaric stand.

About the authors

G. N. Sobyanina

Sevastopol State University

Author for correspondence.
Email: galsob@rambler.ru
ORCID iD: 0000-0002-5988-0765
SPIN-code: 5043-3075

Galina N. Sobyanina – Cand. of Sci. (Med.), Associate  Professor, Leading Researcher of the Research  Laboratory “Experimental Life Support Systems for  Biological Objects”

299053, Sevastopol, st. Universitetskaya, 33

Russian Federation

S. Yu. Malkov

Sevastopol State University

Email: sklif@bk.ru

Sergey Yu. Malkov – diving medicine doctor (special  physiologist), head of the biomedical group of the  research laboratory “Experimental life support systems for biological objects”

299053, Sevastopol, st. University, 33

Russian Federation

M. I. Pavlov

Sevastopol State University

Email: mixail.pavlov.1993@mail.ru
ORCID iD: 0000-0001-9998-2080
SPIN-code: 4194-0706

Mikhail I. Pavlov – engineer of the 2nd category of the research laboratory Experimental life support systems for biological objects

299053, Sevastopol, st. Universitetskaya, 33

Russian Federation

References

  1. Корепанов А.Л. Жидкостное дыхание. Частичная жидкостная вентиляция легких (сообщение первое) // Вестник физиотерапии и курортологии. 2018. Т. 24, № 2. С. 62–70
  2. Корепанов А.Л., Шуневыч О.Б., Василенко И.Ю. Жидкостное дыхание. Тотальная жидкостная вентиляция легких (сообщение второе) // Вестник физиотерапии и курортологии. 2018. Т. 24, № 4. С. 86–93
  3. Lee W.L., Slutsky A.S. Acute Hypoxemic Respiratory Failure and ARDS Murray and Nadel’s Textbook of Respiratory Medicine (Sixth Edition). 2016, Vol. 2, pp. 1740–1760.e7. doi: 10.1016/B978-1-4557-3383-5.00100-7
  4. Hirschl R.B., Croce M., Gore D., et al. Prospective, randomized, controlled pilot study of partial liquid ventilation in adult acute respiratory distress syndrome. Am J Respir Crit Care Med. 2002, Vol. 165, pp. 781.
  5. Suman Sarkar, Anil Paswan, Prakas S. Liquid ventilation. Anesth Essays Res, 2014, Vol. 8, № 3, pp. 277–282. doi: 10.4103/0259-1162.143109
  6. Мороз В.В., Власенко А.В., Закс И.О. Жидкостная вентиляция легких, ее возможности и перспективы (современное состояние вопроса) // Анестезиология и реаниматология. 2001. N 6. С. 66–73
  7. Мороз В.В., Остапченко Д.А., Власенко А.В., Осипов П.Ю., Герасимов Л.В. Эндотрахеальное применение перфторана в условиях ИВЛ у больных с острым респираторным дистресс-синдромом // Общая реаниматология. 2005. Т. 2. С. 5–11 8. Попцов В.Н., Баландюк А.Е. Первый клинический опыт использования частичной жидкостной вентиляции на основе эндобронхиального введения перфторана в комплексной терапии респираторного дистресс-синдрома. Российский биомедицинский журнал Medline.ru. 2004. Т. 5. С. 173–174
  8. Баринов В.А., Бонитенко Е.Ю., Белякова Н.А., Родченкова П.В., Тоньшин А.А., Панфилов А.В., Бала А.М., Головко А.И., Шилов В.В. Использование перфторуглеродных жидкостей в лечении респираторного дистресс-синдрома (обзор литературы) // Российский биомедицинский журнал. Medline.ru. 2022. Т. 23, № 1. С. 515–555.
  9. Котский М.А., Бонитенко Е.Ю., Макаров А.Ф., Каниболоцкий А.А., Кочоян А.Л., Литвинов Н.А. О возможности использования жидкостного дыхания для профилактики развития декомпрессионных нарушений // Медицина труда и промышленная экология. 2022. Т. 62, № 2. С. 91–100 doi: 10.31089/1026-9428-2022-62-2-91-100R (In Russ.)].
  10. Котский М.А., Бонитенко Е.Ю., Тоньшин А.А., Родченкова П.В., Муравская М.П., Ткачук Ю.В., Каниболоцкий А.А., Кочоян А.Л. Жидкостная респираторная десатурация — новый метод профилактики декомпрессионной болезни // Медицина труда и промышленная экология. 2023. Т. 63, № 1. С. 4–17. doi: 10.31089/1026-9428-2023-63-1-4-17

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Sobyanina G.N., Malkov S.Y., Pavlov M.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies