Application of hyperbaric oxygenation in patients with a new coronavirus infection COVID-19: prospective study

Cover Page

Cite item

Full Text

Abstract

OBJECTIVE: To study the effect of hyperbaric oxygenation HBO on the dependence of COVID-19 patients on constant oxygen support and clinical and biochemical parameters that are markers of the severity of this pathological condition.
MATERIAL AND METHODS: 30 patients were examined with the diagnosis of “Coronavirus infection caused by the SARS-CoV-2 virus” (20 - CT1-2 patients, 10 – CT 3-4 patients) who were on constant oxygen support from the first day of admission to the hospital. Twenty patients (the main group) were assigned a six-day course of hyperbaric oxygenation (HBO) in the mode of 1.4 ata - 60 min, one session per day. The procedure was carried out in the domestic pressure chamber “BLKSM”. At the time of the appointment of the HBO course, the patients were on endonasal oxygen supply for 3 to 5 days (EOS, 8-10 liters per minute) or from 2 to 4 days on noninvasive ventilation of the lungs (NIVL). The indication for the appointment of HBO was the inefficiency of the oxygen support provided. Before and after each HBO session, the patient’s subjective state was assessed, blood oxygen saturation was measured, the dynamics of the content of leukocytes, platelets, C-reactive protein (CRP), ferritin and transferase activity were evaluated. The control group (10 people) consisted of COVID-19 patients who had contraindications to the use of HBO (claustrophobia, bullous lung disease). Statistics. Statistical processing of the obtained data was carried out using the program “Statistica 10.0” (Dell Inc., USA).
RESULTS: Already by the 3rd HBO session, five out of 10 COVID-19 c CT1-2 patients did not need constant oxygen support, and 4 out of 5 COVID-19 c CT 3-4 patients switched from NIV to EOS. After the 6th HBO session, only one patient needed constant oxygen support (EOS), which was canceled 4 days after the end of the HBO course. There was no lethality in this group. In patients of the control group, oxygen support was distributed as follows: on the first day - 8 people on EOS, 2 on NIVL; on day 3- 4 people on EOS, 6 on NIVL; on day 7 -3 people on EOS, 4 on NIVL, two on invasive ventilation of the lungs (IVL). By the 14th day, five people did not need constant oxygen support, 2 on EOS. 1 on NIVL; two patients who were on a ventilator died. In the main group, the elimination of hypoxemia was noted on the 6th day of HBO use, whereas in the control group it persisted by the 14th day of treatment. Regardless of the severity of the pathological process, the use of HBO caused a decrease in the content of blood leukocytes, not exceeding the lower limit of the norm, reduced the degree of hyperferritinemia. The rate of decrease in the blood of C-reactive protein (CRP) under the influence of HBO was inversely dependent on the severity of the pathological condition.
DISCUSSION: The rapid refusal of patients with COVID-19 from constant oxygen support during the course of the use of HBO indicates the ability of hyperbaric oxygen to eliminate violations of the gas exchange function of the lungs. At the same time, HBO has an anti-inflammatory effect on the sick body, acting as a synergist with drug therapy, which is manifested by a decrease in the content of acute phase proteins in the blood and the elimination of leukocytosis. The rate of decrease in the blood of C-reactive protein (CRP) under the influence of HBO was inversely dependent on the severity of the pathological condition.
CONCLUSION: Course application of HBO in 1.4 ata mode, 50 min, one session per knock. It is an effective method of treating respiratory failure and preventing its progression in patients with COVID-19.

About the authors

Yu. V. Struk

Voronezh State Medical University named after N.N. Burdenko

Email: u_struk@mail.ru
ORCID iD: 0000-0003-2012-8901
SPIN-code: 7657-0922

Yuri V. Struk — Dr. of (Sci.) Med., Professor, Head of the  Department of Anesthesiology-Resuscitation and  Emergency Medical Care of the Institute of Additional  Professional Education

Voronezh, Studentskaya str., 10

Russian Federation

P. N. Savilov

Tambovsk Central District Hospital

Email: p_savilov@mail.ru
ORCID iD: 0000-0003-0506-8939
SPIN-code: 2394–0924

Pavel N. Savilov — Dr. of (Sci.) Med., Professor,  nesthesiologist-resuscitator

392624, Tambov region, Tambov district, Pokrovo-Prigorodnoye village, Polevaya str., 4

Russian Federation

O. A. Yakusheva

Voronezh State Medical University named after N.N. Burdenko

Author for correspondence.
Email: oy33@mail.ru
ORCID iD: 0000-0003-1430-3099
SPIN-code: 7549-7026

Olga A. Yakusheva — Cand. of Sci. (Med.), Associate  Professor of the Department of Anesthesiology- Resuscitation and Emergency Medical Care of the IDPO

Voronezh, Studentskaya str., 10

Russian Federation

E. B. Vakhtina

Voronezh State Medical University named after N.N. Burdenko

Email: vahtina.eva@mail.ru
ORCID iD: 0000-0001-8612-807X
SPIN-code: 6691-2255

Evgeniya B. Vakhtina — Assistant of the Department of  Anesthesiology-Resuscitation and Emergency  Medical Care of the IDPO

Voronezh, Studentskaya str., 10

Russian Federation

O. Yu. Efremova

Voronezh Regional Clinical Hospital No. 1

Email: efremolga2@rambler.ru

Olga Yu. Efremova — Cand. of Sci. (Med.), Head of the Department of Hyperbaric oxygenation

Voronezh, Moskovsky ave., 151, building 1

Russian Federation

I. M. Perveeva

Voronezh Regional Clinical Hospital № 1

Email: perveeva.inna@yandex.ru
ORCID iD: 0000-0002-5712-9302

Inna M. Perveeva — Cand. of Sci. (Med.), pulmonologist

Voronezh, Moskovsky ave., 151, building 1

Russian Federation

A. V. Verikovskaja

I.M. Sechenov First Moscow State Medical University

Email: verikovskaia18@gmail.com

Anna V. Verikovskaya — student, N.V. Sklifosovsky  Institute of Clinical Medicine, 6th year

Moscow, Trubetskaya str., 8, p. 2

Russian Federation

References

  1. Guan W., Ni Z., Hu Yu., Liang W. Clinical characteristics of coron-avirus disease 2019 in China. N. Engl. J. Med, 2020, Vol. 382, № 18, pp. 1708–1720. doi: 10.1056/NEJMoa2002032.
  2. Joly B.S., Siguret V., Veyradier A. Understanding pathophysiology of hemostasis disorders in critically ill patients with COVID-19. Intensive Care Med, 2020, Vol. 46, № 8, рр. 1603–1606. doi: 10.1007/s00134-020-06088-1.
  3. Глыбочко П.В., Фомин В.В., Моисеев С.В. Исходы у больных с тяжелым течением COVID-19, госпитализированных для респираторной поддержки в отделения реанимации и интенсивной терапии // Клиническая фармакология и терапия. 2020. № 3. С. 25–36 doi: 10.32756/0869-5490-2020-3-25-36.
  4. Henry B.M., Lippi G. Poor survival with extracorporeal membrane oxygenation in acute respiratory distress syndrome (ARDS) due to coronavirus disease 2019 (COVID-19): Pooled analysis of early reports // J. Crit Care, 2020, Vol. 58, pp. 27–28. doi: 10.1016/j.jcrc.2020.03.01
  5. Savilov P.N. On the possibility of using hyperbaric oxygenation in the treatment of SARS-CoV-2 infected patients. Danish Scientific Journal, 2020, Vol. 1, № 36, pp. 43–49.
  6. Howell R.S., Criscitelli T., Woods J.S., Gillette B.M., Gorenstein S. Hyperbaric oxygen therapy: indications, contraindications, and use at a tertiary care center. AORN J, 2018, Vol. 107, № 4, pp. 442–453. doi: 10.1002/aorn.1209
  7. Thibodeaux K., Speyrer Z., Raza A. Hyperbaric oxygen therapy in preventing mechanical ventilation in COVID-19 patients: a retrospective case series. Journal of Wound Care, 2020, Vol. 29, Suppl. 5a, pp. S4–S8. doi:%2010.12968/jowc.%202020.29.%20Sup5a.S4.
  8. Paganini M., Perozzo B.G., F.A.G. The role of hyperbaric oxygen treatment for COVID-19: a review. Advances in Experimental Medicine and Biology, 2020, Vol. 1289, pp. 27–35. doi: 10.1007/5584_2020_568.
  9. Левина О.A., Евсеев А.K., Шабанов А.K. Безопасность гипербарической оксигенации при лечении COVID-19 // Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь». 2020. Т. 9, № 3. С. 14–19. doi: 10.23934/2223-9022-2020-9-3-314-320.
  10. Ефремова О.Ю., Зайцев А.А., Золотухин О.В., Костина Н.Э. Опыт применения гипербарической оксигенации у кислородзависимых пациентов с тяжелыми формами коронавирусной инфекции // Сборник трудов XXX Национального конгресса по болезням органов дыхания с международным участием / под ред. А. Г. Чучалина. М., 2020. С. 113.
  11. Гриппи М.А. Патофизиология легких / пер. с англ. Ю. М. Шапкайца под ред. Ю. В. Наточина. 2-е изд., испр. М.; СПб.: БИНОМ, Невский Диалект, 1999. 344 с.
  12. Петриков С.С., Евсеев А.К., Левина О.А., Шабанов А.К., Горончаровская И.В., Потапова Н.А., Слободенюк Д.С., Гринь A.A. Эффективность включения гипербарической оксигенации в комплексную терапию пациентов с COVID-19: ретроспективное исследование // Морская медицина. 2022. Т. 8, No 3. С. 48–61. doi: 10.22328/2413-5747-2022-8-3-48-61
  13. Гребенникова И. В., Лидохова О. В., Макеева А. В. Возрастные аспекты изменения лейкоцитарных индексов при COVID-19 // Научно-медицинский вестник Центрального Черноземья. 2022. № 87. С. 9–15.
  14. Ефремова О.Ю. Гипербарическая и нормобарическая оксигенотерапия при патологии беременных. II. Гипербарическая оксигенация в комплексном лечении фетоплацентарной недостаточности // Бюллетень гипербарической биологии и медицины. 2004. Т. 12, № 3–4. С. 27–34.
  15. Савилов П.Н. Кровоток и напряжение кислорода в печени при различных способах ее повреждения и гипероксии // Патологическая физиология и экспериментальная терапия 2020. Т. 64, № 2. С. 54–62. doi: 10 25557/0031-2991 2020 02 54-62.
  16. Леонов А.Н. Гипероксия. Адаптация. Саногенез. Воронеж: Издательство ВГМА. 2006. 190 с.
  17. Савилов П.Н. Эффекты гипероксического последействия и постгипероксическое состояние организма // Бюллетень гипербарической биологии и медицины. 2006. Т. 14, № 1–4. С. 21–51.
  18. Savilov P.N. Hyperoxic sanogenesis of lings Gas exchang function in SARS_CoV2-associated pneumonia. Norvegian Journal of development of the international Science, 2021, Vol. 65, № 1, pp. 29–40. doi:10.24412-3453-9875-2021-65-1-29-40
  19. Savilov P.N. Forms of Adaptation to Hyperoxia. Norvegian Journal of development of the international Science, 2021, Vol. 1, № 55, pp. 26–32. doi: 10.24412/3453-9875-2021-55-1-26-32
  20. Наумов А.В., Арцименя Л.Т., Биндич Е.Ю., Наумова Н.В. С-реактивный белок // Журнал Гродненского медицинского университета. 2010. № 4. С. 3–10.
  21. Kushner I., Jiang S.L., Zhang D., Lozanski G., Samols D. Do post-transcriptional mechanisms participate in induction of C-reactive protein and serum amyloid A by IL-6 and IL-1. Ann. N. Y. Acad. Sci, 1995, Vol. 762, pp. 102–107. doi: 10.1111/j.1749-6632.1995.tb32318.x
  22. Орлов Ю.П., Иванов А.В., Долгих В.Т. Нарушение обмена железа в патогенезе критических состояний (экспериментальное исследование) // Общая реаниматология. 2011. Т.7, № 5. С. 15–19
  23. Finazzi D., Arosio P. Biology of ferritin in mammals: an update on iron storage, oxidative damage and neurodegeneration. Arch Toxicol, 2014, Vol. 88, № 10, pp. 1787–802. doi: 10.1007/s00204-014-1329-0

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Struk Y.V., Savilov P.N., Yakusheva O.A., Vakhtina E.B., Efremova O.Y., Perveeva I.M., Verikovskaja A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies