Helium physico-chemical «recruitment» of pulmonary alveols in prevention of alveolar collapse and prevention of acute respiratory distress syndrome in patients with severe COVID19 pneumonia
- Authors: Svistov A.S.1, Mosyagin I.G.2, Simakina O.E.3
-
Affiliations:
- Military Medical Academy named after S.M. Kirov
- High Command of the Navy
- Institute of experimental medicine
- Issue: Vol 6, No 4 (2020)
- Pages: 73-81
- Section: INNOVATIVE DEVELOPMENTS
- URL: https://seamed.bmoc-spb.ru/jour/article/view/391
- DOI: https://doi.org/10.22328/2413-5747-2020-6-4-73-81
- ID: 391
Cite item
Full Text
Abstract
Purpose. Show the significance of helium heated to 95°C (as part of Thermogeliox) in reducing the surface tension of water, including the liquid and cellular fraction of blood, which normalizes the movement of red blood cells in the capillaries and preserves the physiological function of the alveolar — capillary space, improving gas exchange in the alveoli.
Materials and methods. The data on the dynamics of complaints and anamnesis, clinical symptoms, results of laboratory and instrumental studies, the results of pathological, pathomorphological and histological manifestations of severe coronavirus pneumonia (CVP) complicated by acute respiratory distress syndrome (ARDS) were analyzed.
Results and its discussion. In the complex treatment of severe coronavirus infection (CVI), it is proposed to use the modern innovative medical technology «SIMT», which includes a modern device «Ingalit B2–01», inhaling a respiratory gas mixture heated to 90–100°C — thermogeliox, consisting of oxygen 20–30% and helium 70–80%, alternating with inhalation of pulmonary surfactant by a nebulizer. It is advisable to inject the anticoagulant under the skin. It has been shown that the development of ARDS in CEP is associated with acute coronavirus alveolitis. A quick positive systemic therapeutic effect — the prevention of ARDS in patients with severe CVP when using our proposed «SIMT» is due to a number of physicochemical and physiological effects of thermal helium.
Materials and methods. The data on the dynamics of complaints and anamnesis, clinical symptoms, results of laboratory and instrumental studies, the results of pathological, pathomorphological and histological manifestations of severe coronavirus pneumonia (CVP) complicated by acute respiratory distress syndrome (ARDS) were analyzed.
Results and its discussion. In the complex treatment of severe coronavirus infection (CVI), it is proposed to use the modern innovative medical technology «SIMT», which includes a modern device «Ingalit B2–01», inhaling a respiratory gas mixture heated to 90–100°C — thermogeliox, consisting of oxygen 20–30% and helium 70–80%, alternating with inhalation of pulmonary surfactant by a nebulizer. It is advisable to inject the anticoagulant under the skin. It has been shown that the development of ARDS in CEP is associated with acute coronavirus alveolitis. A quick positive systemic therapeutic effect — the prevention of ARDS in patients with severe CVP when using our proposed «SIMT» is due to a number of physicochemical and physiological effects of thermal helium.
About the authors
A. S. Svistov
Military Medical Academy named after S.M. Kirov
Author for correspondence.
Email: pr.svistov@gmail.com
Aleksandr S. Svistov
Saint-Petersburg
Russian FederationI. G. Mosyagin
High Command of the Navy
Email: mosyagin-igor@mail.ru
ORCID iD: 0000-0003-2414-1644
Igor G. Mosyagin
Saint-Petersburg
Russian FederationO. E. Simakina
Institute of experimental medicine
Email: r154ao@gmail.com
ORCID iD: 0000-0001-6384-2772
Olga E. Simakina
Saint-Petersburg
Russian FederationReferences
- Глыбочко П.В. Клиническая характеристика 1007 больных тяжелой SARS-CoV-2 пневмонией, нуждавшихся в респираторной поддержке // Клиническая фармакология и терапия. 2020. Т, 29, № 2. С. 21–29.
- Murthy S., Charles D.G., Robert A.F. Carefor Critically Ill Patients With COVID-19 // JAMA. 2020. Vol. 323 (15). Р. 14991500. doi: 10.1001/jama.2020.3633.
- Омельяновский В.В., Антонов А.А., Безденежных Т.П., Хачатрян Г.Р. Систематический обзор актуальных научных сведений о применении лекарственных препаратов в терапии новой коронавирусной инфекции COVID-19 // Медицинские технологии. Оценка и выбор. 2020. № 1. С. 8–18. doi: 10.31556/2219-0678.2020.39.1.008-018.
- Ware L.B., Matthay M.A. The acute respiratory distress syndrome (англ.) // The New England Journal of Medicine. 2000. May. Vol. 342, No. 18. P. 1334–1349. doi: 10.1056/NEJM200005043421806. PMID: 10793167.
- Moloney E.D., Evans T.W. Pathophysiology and pharmacological treatment of pulmonary hypertension in acute respiratory distress syndrome (англ.) // Eur. Respir. J. 2003. April, Vol. 21, No. 4. P. 720–727. PMID: 12762363.
- Crowe S.M. Pathogenesis. 2006. 435 p.
- Галкин А.А., Демидова В.С. Центральная роль нейтрофилов в патогенезе синдрома острого повреждения легких (острый респираторный дистресс-синдром) // Успехи современной биологии. 2014. Т. 134, № 4. С. 377–394.
- Behrens Е.М., Koretzky G.A. Treatment of cytokine storm syndromes. 2017. 1137 р.
- Sinha Р., Matthay M.A., Calfee C.S. Is a «Cytokine Storm» Relevant to COVID-19? (англ.) // JAMA Internal Medicine. 2020. 1 September. Vol. 180, iss. 9. P. 1152. doi: 10.1001/jamainternmed.2020.3313. PMID: 32602883.
- Sungnak W. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes // Nat. Med. 2020. Vol. 26. P. 681–687.
- Jackson S.P., Darbousset R., Schoenwaelder S.M. Thromboinflammation: challenges of therapeutically targeting coagulation and other host defense mechanisms // Blood. 2019. Vol. 133. Р. 906–918.
- Черняев А.Л., Самсонова М. Этиология, патогенез и патологическая анатомия диффузного альвеолярного повреждения // Общая реаниматология. 2000. № 5. С. 13–16.
- Власенко А.В., Евдокимов Е.А., Родионов Е.П. Современные принципы коррекции гипоксии при ОРДС различного генеза. Часть 1 // Вестник анестезиологии и реаниматологии. 2020. № 17 (3). С. 61–78. https://doi.org/10.21292/2078-5658-2020-17-3-61-78.
- Dandachi D., Rodriguez-Barradas М.С. Viral pneumonia: etiologies and treatment. Abstract // J. Investig. Med. 2018 Aug. Vol. 66 (6). P. 957–965. doi: 10.1136/jim-2018–000712.
- Dreyfuss D., Saumon G. Ventilator-induced lung injury: lessons from experimental studies (англ.) // American Journal of Respiratory and Critical Care Medicine (англ.) рус. 1998. January (Vol. 157, No. 1). P. 294–323. PMID: 9445314.
- Красновский В.Л., Григорьев С.П, Алехин А.И., Потапов В.И. Применение подогретой кислородно-гелиевой смеси в комплексном лечении пациентов с внебольничной пневмонией // Клиническая медицина. 2013. № 5. С. 38–41.
- Хайдаров Г.Г., Хайдаров А.Г., Машек А.Ч. Физическая природа поверхностного натяжения жидкости // Вестник Санкт-Петербургского ун-та. Серия 4 (Физика, химия). 2011. Вып. 1. С. 3–8.
- Хайдаров Г.Г. О связи поверхностного натяжения с теплотой парообразования // Журнал физической химии. 1983. № 10. С. 2528–2530.
- Хайдаров Г.Г., Хайдаров А.Г., Машек А.Ч. Влияние температуры на поверхностное натяжение // Вестник СанктПетербургского ун-та. Серия 4 (Физика, химия). 2012. Вып. 1. С. 24–28.
- Куницын В.Г., Мокрушников П.В., Панин Л.Е. Механизм микроциркуляции эритроцита в капиллярном русле при физиологическом сдвиге рН // Бюл. СО РАМН. 2007. № 5. С. 28–30.
- Шахнович П.Г. Периферическое кровообращение в условиях гипоксической и циркуляторной гипоксии // Вестник Российской военно-медицинской академии. 2016. № 1 (53). С. 13–16.