Retrospective analysis of blood fatty acids profile on member of the military

Cover Page

Cite item

Full Text

Abstract

INTRODUCTION: The study of the profile fatty acids (FA) as an energy and functional link of physical performance among enforcement agencies seems to be very relevant.
OBJECTIVE: Assessment of the blood FA profile of the body of military before and after a 4-month special duty associated with health and life risks.
MATERIALS AND METHODS: This prospective, between-subjects, repeated measures, study was conducted during 2014 year. 25 OMON fighters of the Komi Republic were examined before the trip and after a 4-month trip to the North Caucasus, where they constantly experienced combat stress. As a comparison group - employees of the Ministry of Emergency Situations (12 man). The level of FAs pool in total blood plasma lipids was determined by gas chromatography.
RESULTS: During the initial examination of OMON fighters, a higher proportion of hypercholesterolemic myristic acid was revealed in both groups relative to the recommended norms. Its level was significantly higher in the special forces group and averaged 1.5 mol% (p = 0.028). The level of essential n-3 polyunsaturated fatty acids (PUFAs) in the blood plasma (α-linolenic and eicosapentaenoic acids) reduced relative to the baseline values in the participants against the background of a high proportion of linoleic acid was established, as evidenced by the high value of the n6/n3 index - 13.8 / 1 at the recommended standards of WHO 5- 7/1. A re-examination of OMON officers conducted after a trip showed a significant decrease in the level of saturated (p=0.040) and essential n-3 docosahexaenoic (p=0.000) and α-linolenic acids (p=0.003) in blood lipids in 92% and 68% of the subjects respectively. At the same time, the proportion of docosahexaenoic acid in the blood negative correlated with the indicator of personal anxiety (r= -0.32; p=0.028).
DISCUSSION: The professional activity of military and the presence of regular psycho-emotional stress most significantly affect the essential part of fatty acids. The conducted study indicates the need to optimize the diet of participants and additional intake of food supplement, n-3 PUFAs enriched.

About the authors

A. Yu. Lyudinina

Institute of Physiology, Ural Branch, Russian Academy of Sciences;
Pitirim Sorokin Syktyvkar State University

Author for correspondence.
Email: salu_06@inbox.ru
ORCID iD: 0000-0003-4849-4735

Alexandra Yu. Lyudinina — Cand. of Sci. (Biol.), Senior Researcher Department of Ecological and Medical Physiology

167982, Syktyvkar, Pervomayskaya str., 50;

Senior Lecturer of the Biochemistry and Physiology Department

Syktyvkar

Russian Federation

O. I. Parshukova

Institute of Physiology, Ural Branch, Russian Academy of Sciences;
Pitirim Sorokin Syktyvkar State University

Email: olga-parshukova@mail.ru
ORCID iD: 0000-0003-1862-6936

Olga I. Parshukova — Cand. of Sci. (Biol.), Researcher  Department of Ecological and Medical Physiology

167982, Syktyvkar, Pervomayskaya str., 50;

Lecturer of the Biochemistry and Physiology Department

Syktyvkar

Russian Federation

E. R. Bojko

Institute of Physiology, Ural Branch, Russian Academy of Sciences;
Pitirim Sorokin Syktyvkar State University

Email: boiko60@inbox.ru
ORCID iD: 0000-0002-8027-898X

Evgeny R. Bojko  — Dr. of Sci. (Med.), Professor, Director Department of Ecological and Medical Physiology

167982, Syktyvkar, Pervomayskaya str., 50;

Head of the Biochemistry and Physiology Department

Syktyvkar

Russian Federation

References

  1. Солонин Ю.Г., Варламова Н.Г., Вахнина Н.А., Логинова Т.П., Людинина А.Ю., Марков А.Л., Потолицына Н.Н., Бойко Е.Р. Функциональное состояние бойцов ОМОН до и после командировки // Морская медицина. 2020. Т. 6, № 1. С. 64–73. doi: 10.22328/2413-5747-2020-6-1-64-73
  2. Bukhari A.S., Lutz L.J., Smith T.J., Hatch-McChesney A., O’Connor K.L., Carrigan C.T., Hawes M.R., McGra, S.M., Taylor K.M., Champagne C.M., et al. A Food-Based Intervention in a Military Dining Facility Improves Blood Fatty Acid Profile. Nutrients. 2022. Vol. 14. № 4. pp. 2-15. doi: 10.3390/nu14040743
  3. Hoge C.W., Auchterlonie J.L., Milliken C.S. Mental health problems, use of mental health services, and attrition from military service after returning from deployment to Iraq or Afghanistan. JAMA. 2006. Vol. 295. № 9. P. 1023–1032.
  4. Hibbeln J.R., Gow R.V. The Potential for Military Diets to Reduce Depression, Suicide, and Impulsive Aggression: A Review of Current Evidence for Omega-3 and Omega-6 Fatty Acids. Military Medicine. 2014. Vol. 179 (Issue suppl_11). P. 117–128. doi: 10.7205/MILMED-D-14-00153
  5. Marriott B.P., Hibbeln J.R., Killeen T.K., Magruder K.M., Holes-Lewis K., Tolliver B.K., Turner T.H. Design and methods for the Better Resiliency Among Veterans and non-Veterans with Omega-3’s (BRAVO) study: A double blind, placebocontrolled trial of omega-3 fatty acid supplementation among adult individuals at risk of suicide. Contemp. Clin. Trials. 2016. Vol. 47. P. 325–333.
  6. Mickleborough T.D. Omega-3 Polyunsaturated Fatty Acids in Physical Performance Optimization // International Journal of Sport Nutrition and Exercise Metabolism. 2013. No. 23. Р. 83–96. doi: 10.1123/ijsnem.23.1.83
  7. Lyudinina A., Bushmanova E., Varlamova N., Bojko E. Dietary and plasma blood α-linolenic acid as modulator of fat oxidation and predictor of aerobic performance. Journal of the International Society of Sports Nutrition. 2020. Т. 17. Vol. 1. № 57. P. 1–7. doi: 10.1186/s12970-020-00385-2
  8. Vannice G., Rasmussen H. Position of the Academy of Nutrition and Dietetics: Dietary Fatty Acids for Healthy Adults. J. Acad. Nutr. Diet. 2014. Vol. 114. P. 136–153.
  9. Simopoulos A.P. The omega-6/omega-3 fatty acid ratio, genetic variation, and cardiovascular disease. Asia Pacific Journal of Clinical Nutrition. 2008. Vol. 17. P.131–134.
  10. Lewis M.D., Bailes J. Neuroprotection for the warrior: Dietary supplementation with omega-3 fatty acids. Mil. Med. 2011. Vol. 176, P. 1120–1127.
  11. Бойко Е.Р. Физиолого-биохимические механизмы обеспечения спортивной деятельности зимних циклических видов спорта. Институт физиологии Федерального исследовательского центра Коми научного центра Уральского отделения Российской академии наук. Сыктывкар. 2019. 256 с.
  12. Hodson L., Skeaff C.M., Fielding B.A. Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake. Progress in Lipid Research. 2008. Vol. 47. P. 348–380. doi: 10.1016/j.plipres.2008.03.003
  13. Shramko V.S., Polonskaya Y.V., Kashtanova E.V., Stakhneva E.M. and Ragino Yu.I. The Short Overview on the Relevance of Fatty Acids for Human Cardiovascular Disorders. Biomolecules. 2020. Vol. 10. P. 1127. doi: 10.3390/biom10081127
  14. Fattore E., Bosetti C., Brighenti F., Agostoni C., Fattore G. Palm oil and blood lipid–related markers of cardiovascular disease: a systematic review and meta-analysis of dietary intervention trials. Am. J. Clin. Nutr. 2014. Vol. 99. P. 1331–1350. doi: 10.3945/ajcn.113.081190
  15. Marangonia F., Colomboa C., Martielloa A., Negrib E., Gallia C. The fatty acid profiles in a drop of blood from a fingertip correlate with physiological, dietary and lifestyle parameters in volunteers. Prostaglandins, Leukotrienes and Essential Fatty Acids. 2007. Vol. 76. P. 87–92. doi: 10.1016/j.plefa.2006.11.004
  16. Xi S., Pham H., Ziboh W. A 15-hydroxyeicosatrienoic acid (15-HETrE) suppresses epidermal hyperproliferation via the modulation of nuclear transcription factor (AP-1) and apoptosis. Arch Dermatol Res. 2000. Vol. 292. No. 8. P. 397–403.
  17. Mason R.P., Jacob R.F., Corbalan J.J., Malinski T. Combination Eicosapentaenoic Acid and Statin Treatment Reversed Endothelial Dysfunction in HUVECs Exposed to Oxidized LDL. J. Clin. Lipidol. 2014. Vol. 8. P. 342–343. doi: 10.1016/j.jacl.2014.02.074
  18. Ishida T., Naoe S., Nakakuki M., Kawano H., Imada K. Eicosapentaenoic Acid Prevents Saturated Fatty Acid-Induced Vascular Endothelial Dysfunction: Involvement of Long-Chain Acyl-CoA Synthetase. J. Atheroscler. Thromb. 2015. Vol. 22. P. 1172–1185. doi: 10.5551/jat.28167
  19. Yang Y.C., Lii C.K., Wei Y.L., Li C.C., Lu C.Y., Liu K.L., Chen H.-W. Docosahexaenoic acid inhibition of inflammation is partially via cross-talk between Nrf2/heme oxygenase 1 and IKK/NF-κB pathways. J. Nutr. Biochem. 2013. Vol. 24. P. 204–212. doi: 10.1016/j.jnutbio.2012.05.003
  20. Shei R.J., Lindley M.R., & Mickleborough T.D. Omega-3 polyunsaturated fatty acids in the optimization of physical performance. Military Medicine. 2014. Vol. 179 (11 Suppl.). P. 144–156. doi: 10.1123/ijsnem.23.1.83
  21. Da Boit M., Hunter A.M., Gray S.R. Fit with good fat? The role of n-3 polyunsaturated fatty acids on exercise performance. Metabolism. 2017. No. 66. Р. 45–54. doi: 10.1016/j.metabol.2016.10.007
  22. Johnston D.T., Deuster P., Harris W.S., Macrae H., Dretsch M.N. Red blood cell omega-3 fatty acid levels and neurocognitive performance in deployed U.S. Servicemembers. Nutr. Neurosci. 2013. Vol. 16. pp. 30–38.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Lyudinina A.Y., Parshukova O.I., Bojko E.R.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies