Marine hydrobionts are a perspective source of means for the prevention of radiation-induced disturbances

Cover Page

Cite item

Full Text

Abstract

INTRODUCTION: Today unstable world environment increases the threat of technogenic accidents at nuclear power facilities that requires an active search for radioprotectors that meet safety requirements, efficiency and reliability of their operation when exposed to the body of ionizing radiation. Over the past decades scientists of this area have turned their attention to biologically active substances (BAS) from marine hydrobiotics, representatives of which are triterpene glycosides (holothuria) and sulfated polysaccharides (brown seaweed fucoidan).
OBJECTIVE: Study and synthesis of domestic and international experience, resulting from ongoing research in Russia and abroad; search for ways to prevent, minimize negative postradiation effects and correct these damages using biologically active compounds, derived from marine hydrobionts.
MATERIALS AND METHODS: The study used materials of domestic and foreign authors, covering the historical period from building an atomic weapon to modern times, characterized by the threat of using “dirty bombs”, terrorist attacks on peaceful nuclear power facilities (NPF). Search terms include international and Russian database (PubMed, eLIBRARY.RU) and also search queries (see keywords).
RESULTS: It was found that polysaccharides and polyphenolic compounds occupy a leading place in many publications due to their low toxicity compared to other natural and commercial radioprotective agents. The study assesses the relationship between key radioprotective properties (antioxidant, antiradical, anti-inflammatory, anti-stress) and BAS radioprotective activity. It outlines action mechanisms of different radioprotectors.
DISCUSSION: To date, the issue of practical pharmacology remains relevant – creating effective drugs of radiation protection. In crisis (emergency) conditions radioprotection use and support of body hematopoietic function are the crucial factor in the outcome of the body struggling for survival. However, in addition to emergency a new purpose of radioprotectors has been often mentioned in the scientific community in recent times – as means of lesion prevention, caused by low-dose and chronic exposure. The results of scientific experiments around the world demonstrates the consensus view within Russian and foreign scientists regarding a positive radioprotective effect of different BAS groups from marine hydrobionts (triterpene glycosides, sulfated polysaccharides, chitosan, etc.). However, there is a discussion of divergent scientific approaches to assessing the impact of chronic and low-dose exposure (“radiation hormesis” and “non-threshold concept of radiation effect”) on the body. The views on a single problem, proposed for discussion, suggest the relevance of further scientific research for ways to overcome the negative impact of radiation-induced damage effects to biological organisms.|
CONCLUSION: Marine hydrobionts can be considered as a highly promising source of biologically active substances for creating pharmaceutical drugs. Diverse spectrum of their biological activity causes scientific interest around the world. Domestic scientists pay close attention to the subject due to several reasons: favorable geographical location (the Pacific Ocean, contiguous to the borders of the Far East and Primorsky Krai), cost-effectiveness of raw material extraction and biological substance production, fast natural reproducibility of the resource base as well as advantages of biological properties in the resulting material over foreign analogues.

About the authors

S. F. Polovov

Far Eastern State Research and Testing Institute of Military Medicine;
Far Eastern Federal University (FEFU), School of Medicine, Department of Clinical Medicine

Author for correspondence.
Email: polovovsf@mail.ru
ORCID iD: 0000-0001-9983-4299

Sergey F. Polovov – Cand. of Sci. (Med.), Associate Professor, Head of the 2nd Research and Testing Department

690080, Russia, Vladivostok, Borisenko str., 100

Russian Federation

L. A. Ivanushko

Far Eastern State Research and Testing Institute of Military Medicine

Email: l.iva_57@mail.ru
ORCID iD: 0000-0001-9525-668X

Lyudmila A. Ivanushko – Cand. of Sci. (Med.), Researcher of the 1st Research and Testing Department

690080, Russia, Vladivostok, Borisenko str., 100

Russian Federation

T. P. Smolina

Far Eastern State Research and Testing Institute of Military Medicine

Email: tsmol@mail.ru
ORCID iD: 0000-0003-4505-3627

Tatyana P. Smolina – Cand. of Sci. (Biol.), Senior  Researcher of the 2nd Research and Testing Department

690080, Russia, Vladivostok, Borisenko str.,100

Russian Federation

References

  1. Половов С.Ф., Кузьмин А.П. Клинические аспекты воздействия малых доз ионизирующего излучения на человека // Здоровье. Медицинская экология. Наука. 2007. Т. 31, № 1. С.10–11
  2. Арутюнян Р.В., Большов Л.А., Боровой А.А., Велихов Е.П. Системный анализ причин и последствий аварии на АЭС «Фукусима-1». Ин-т проблем безопасного развития атомной энергетики РАН. М.: ИБРАЭ РАН. 2018. 408 с. ISBN 978-5-9907220-5-7
  3. Голиков В.Ю. Дозиметрия внешнего облучения населения: сравнение аварий на Чернобыльской АЭС и АЭС «Фукусима-1» // Радиационная гигиена. 2020. Т. 13, № 1. С. 27–37
  4. Аклеев А.В., Дегтева М.О., Крестинина Л.Ю. Сравнительный анализ медико-дозиметрических последствий аварии 1957 г. и загрязнения реки Течи в контексте эффективности защитных мероприятий // Радиационная гигиена. 2020. Т. 13, № 1. С. 16–26. https://doi.org/:10.21514/1998-426X-2020-13-1-16-26
  5. Осиф Б.А., Баратта Э.Дж., Конклинг Т.В. TMI 25 лет спустя: авария на атомной электростанции Три-Майл-Айленд и ее последствия: [англ.]. Юниверсити-Парк, Пенсильвания: издательство Пенсильванского государственного университета. 2004. 195 с.
  6. Сэмюэл Дж. Уокер. Три-Майл-Айленд: ядерный кризис в исторической перспективе. Беркли: University of California Press. 2004. 317 с.
  7. Жупанский О.Я. Оценка радиационной обстановки в зоне ответственности Тихоокеанского флота // Здоровье. Медицинская экология. Наука. 2008. T. 35, № 4. С. 25
  8. Zvyagintseva T.N., Usoltseva R.V., Shevchenko N.M., Surits V.V., Imbs T.I., Malyarenko O.S., Ermakova S.P., Besednova N.N., Ivanushko L.A. Structural diversity of fucoidans and their radioprotective effect. Carbohydrate Polymers, 2021, Vol. 273, pp. 118551. doi: 10.1016/j.carbpol.2021.118551.
  9. Wang W., Xue C, Mao X. Radioprotective effects and mechanisms of animal, plant and microbial polysaccharides. Int J Biol Macromol., 2020, Vol. 153, pp. 373–384. doi: 10.1016/j.ijbiomac.2020.02.203. Epub 2020 Feb 19.
  10. Abraham R.E., Alghazwi M., Liang Q., Zhang W. Advances on marine-derived natural radioprotection compounds: historic development and future perspective. Mar Life Sci Technol., 2021, Vol. 4, № 3, pp. 474–487. doi: 10.1007/s42995-021-00095-x.
  11. Riley P.A. Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int J Radiat Biol., 1994, Vol. 65, pp. 27–33.
  12. Pastina B., LaVerne J.A. Effect of molecular hydrogen on hydrogen peroxide in water radiolysis. J Phys Chem A., 2001, Vol. 105, pp. 9316–9322.
  13. Hosseinimehr S.J. Trends in the development of radioprotective agents. Drug Discov Today, 2007, Vol. 4, No. 12, pp. 794–805. doi: 10.1016/j.drudis.2007.07.017
  14. Santini V., Giles F.J. The potential of amifostine: from cytoprotectant to therapeutic agent. Haematologica, 1999, Vol. 3, No. 84, pp. 1035–1042.
  15. Rades D., Fehlauer F., Bajrovic A., Mahlmann B., Richter E., Alberti W. Serious adverse effects of amifostine during radiotherapy in head and neck cancer patients. Radiother Oncol., 2004, Vol. 6, No. 70, pp. 261–264. doi: 10.1016/j.radonc.2003.10.005
  16. Arora R., Gupta D., Chawla R., Sagar R., Sharma A., Kumar R., Prasad J., Singh S., Samanta N., Sharma R.K. Radioprotection by plant products: present status and future prospects. Phytother Res., 2005, Vol. 5, No. 19, pp. 1–22. doi: 10.1002/ptr.1605
  17. Kim H.J., Kim M.H., Byon Y.Y., Park J.W., Jee Y., Joo H.G. Radioprotective effects of an acidic polysaccharide of Panax ginseng on bone marrow cells. J Vet Sci., 2007, Vol. 14, No. 8, pp. 39–44. doi: 10.4142/jvs.2007.8.1.39
  18. Wang Z.W., Zhou J.M., Huang Z.S., Yang A.P., Liu Z.C., Xia Y.F., Zeng Y.X., Zhu X.F. Aloe polysaccharides mediated radioprotective effect through the inhibition of apoptosis. J Radiat Res., 2004, Vol. 8, No. 45, pp. 447–454. doi: 10.1269/jrr.45.447
  19. Silva T.R., Duarte A.W.F., Passarini M.R.Z., Ruiz A.L.T.G., Franco C.H., Moraes C.B., De Melo I.S., Rodrigues R.A., Fantinatti-Garboggini F., Oliveira V.M. Bacteria from Antarctic environments: diversity and detection of antimicrobial, antiproliferative, and antiparasitic activities. Polar Biol., 2018, Vol. 41, pp. 1505–1519. doi: 10.1007/s00300-018-2300-y
  20. Silva TR, Canela-Garayoa R, Eras J, Rodrigues MVN, dos Santos FN, Eberlin MN, Neri-Numa IA, Pastore GM, Tavares RSN, Debonsi HM, Cordeiro LRG, Rosa LH, Oliveira VM. 2019. Pigments in an iridescent bacterium, Cellulophaga fucicola, isolated from Antarctica. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 2019, Vol. 112, pp. 479-490 doi: 10.1007/s10482-018-1179-521.
  21. Анисимов М.М. Тритерпеновые гликозиды и структурно-функциональные свойства мембран // Биол. науки. 1987. № 10. С. 49–63.
  22. Fedorov S.N., Dyshlovoy S.A., Kuzmich A.S., Shubina L.K., Avilov S.A., Silchenko A.S., Bode A.M., Dong Z., Stonik V.A. In vitro anticancer activities of some triterpene glycosides from holothurians of Cucumariidae, Stichopodidae, Psolidae, Holothuriidae and Synaptidae families. Nat. Prod. Commun., 2016, Vol. 11, No. 9, pp. 1239–1242.
  23. Janakiram A.M., Bryant T., Lightfoot S., Collin P.D., Steele V.E., Rao C.V. Improved innate immune responses by Frondanol A5, a sea cucumber extract, prevent intestinal tumorigenesis. Cancer Prev. Res., 2015, Vol. 8, pp. 327–337.
  24. Menchinskaya E.S., Pislyagin E.A., Kovalchyk S.N., Davydova V.N., Silchenko A.S., Avilov S.A., Kalinin V.I., Aminin D.L. Antitumor activity of cucumarioside A2-2. Chemotherapy, 2013, Vol. 59, pp. 181–191.
  25. Ale M., Maruyama H., Tamauchi H., Mikkelsen J., Meyer A. Fucoidan from Sargassum sp. and Fucus vesiculosus reduces cell viability of lung carcinoma and melanoma cells in vitro and activates natural killer cells in mice in vivo. Int J Biol Macromol, 2011, Vol. 49, No. 3, pp. 331–336.
  26. Nigrelli R.F., Jakowska S. Effects of holothurin, a steroid saponin from the Bahamian sea cucumber (Actinopyga agassizi), on various biological systems. Annals of the New York Academy of Sciences, 1960, Vol. 90, pp. 884–892. doi: 10.1111/j.1749-6632.1960.tb26431.x.
  27. Lasley B.J., Nigrelli R.F. The effects of crude holothurin on leucocyte phagocytosis. Toxicon, 1970, Vol. 8, pp. 301–306. doi: 10.1016/0041-0101(70)90007-3
  28. Седов A.M., Аполлонин A.B., Севастьянова Е.К., Алексеева И.А., Батраков С.Г., Саканделидзе О.Г., Лиходед В.Г., Стоник В.А., Авилов С.А., Купера Е.В. Стимуляция тритерпеновыми гликозидами голотурий неспецифической антибактериальной резистентности мышей к условно-патогенным грамотрицательным микроорганизмам // Антибиотики и химиотерапия. 1990. Т. 35, № 1. С. 23–26
  29. Седов А.М., Елкина С.И., Сергеев В.В., Калина Н.Г., Саканделидзе О.Г., Батраков С.Г., Гиршович Е.С. Способность тритерпеновых гликозидов из голотурий стимулировать антибактериальную устойчивость на модели экспериментального сальмонеллеза мышей // Журнал микробиологии, эпидемиологии и иммунобиологии. 1984. № 5. С. 55–58.
  30. Седов А.М., Шепелева И.Б., Захарова Н.С., Саканделидзе О.Г., Сергеев В.В., Мошиашвили И.Я. Влияние кукумариозида (тритерпенового гликозида из голотурий Cucumaria japonica) на развитие иммунного ответа мышей на корпускулярную вакцину // Журнал микробиология, эпидемиологии и иммунобиологии. 1984. № 9. С. 100–104
  31. Chludil H.D., Murray A.P., Seldes A.M., Maier M.S. Biologically active triterpene glycosides from sea cucumbers. Studies in Natural Products Chemistry. Vol. 28, Part I, Ed. Atta-ur-Rahman. Elsevier Science B.V. 2003, Vol. 28, pp. 587–616.
  32. Ngo D-H., Kim S-K. Sulfated polysaccharides as bioactive agents from marine algae. Int J Biol Macromol., 2013, Vol. 62, pp. 70–75.
  33. Kandasamy S., Khan W., Kulshreshtha G., Evans F., Critchley AT., Fitton J., Stringer DN., Gardiner V-A., Prithiviraj B. The fucose containing polymer (FCP) rich fraction of Ascophyllum nodosum (L.) Le Jol. protects Caenorhabditis elegans against Pseudomonas aeruginosa by triggering innate immune signaling pathways and suppression of pathogen virulence factors. Algae, 2015, Vol. 30, pp. 147–161.
  34. Usov A.I., Zelinsky N.D. Chemical structures of algal polysaccharides. In: Domínguez H, editor Functional Ingredients from Algae for Foods and Nutraceuticals. Woodhead Publishing, Cambridge, 2013, pp. 23–86.
  35. Abad L.V., Kudo H., Saiki S., Nagasawa N., Tamada M., Katsumura Y., Aranilla C.T., Relleve L.S., De La Rosa A.M. Radiation degradation studies of carrageenans. Carbohydr Polym., 2009, Vol. 78, pp.100–106.
  36. Chertkov K.S., Gvozdeva N.I., Fedorenko B.S., Preobrazhenski Y.Y. 1986. Radioprotective and therapeutic efficacy of carrageenan during exposure to proton radiation. Kosm Biol Aviakosm Med., 1986, Vol. 20, 84–86.
  37. Nagasawa N., Mitomo H., Yoshii F., Kume T. Radiation-induced degradation of sodium alginate. Polym Degrad Stab., 2000, Vol. 69, pp. 279–285.
  38. Nesterenko A.V., Nesterenko V.B., Yablokov AV. Chapter IV. Radiation protection after the Chernobyl catastrophe. Ann NY Acad Sci., 2009, Vol. 1181, pp. 287–327.
  39. Höllriegl V., Röhmuss M., Oeh U., Roth P. Strontium biokinetics in humans: influence of alginate on the uptake of ingested strontium. Health Phys., 2004, Vol. 86, pp. 193–196.
  40. Berteau O., Mulloy B. Sulfated fucans, fresh perspectives: structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide. Glycobiology, 2003, No. 13, pp. 29–40. doi: 10.1093/glycob/cwg058
  41. Kiple K.F., Ornelas K.C. Important Vegetable Supplements. In: Beck S.V., editor. The Cambridge World History of Food. Cambridge University Press; Cambridge, UK. 2000, Vol. 1, pp. 231–249.
  42. Koyanagi S., Tanigawa N., Nakagawa H., Soeda S., Shimeno H. Oversulfation of fucoidan enhances its anti-angiogenic and antitumor activities. Biochem Pharmacol., 2003, Vol. 65, № 2, pp. 173–179. doi: 10.1016/s0006-2952(02)01478-8
  43. Иванушко Л.А., Имбс Т.И. Сравнительное изучение цитокининдуцирующих свойств фукоидана из бурых водорослей Fucus evanescens и его производных // Здоровье. Медицинская экология. Наука. 2017. Т. 70, № 3. С. 60–62.
  44. Кузнецова Т.А., Смолина Т.П., Беседнова Н.Н., Сильченко А.С., Имбс Т.И., Ермаков С.П. Влияние сульфатированных полисахаридов из бурой водоросли Fucus evanescens и продукта их ферментативной трансформации на функциональную активность клеток врожденного иммунитета // Антибиотики и химиотерапия. 2016. Т. 61, № 7–8. С. 10–14.
  45. Шутикова А.Л., Иванушко Л.А., Маляренко О.С., Ермакова С.П. Влияние фукоидана на показатели кроветворения облученных мышей // Здоровье. Медицинская экология. Наука. 2017. T. 70, № 3. С. 102–105
  46. Lee J., Kim J., Moon C., Kim S., Hyun J., Park J., Shin T. Radioprotective effects of fucoidan in mice treated with total body irradiation. Phytother Res., 2008, Vol. 22, pp. 1677–1681.
  47. Byon Y.Y., Kim M.H., Yoo E.S., Hwang K.K., Jee Y., Shin T., Joo H.G. Radioprotective effects of fucoidan on bone marrow cells: improvement of the cell survival and immunoreactivity. J Vet Sci., 2008, Vol. 9, No. 4, pp. 359–365. doi: 10.4142/jvs.2008.9.4.359.
  48. Hsin-Hsien Yu, Edward Chengchuan KO, Chia-Lun Chang, Kevin Sheng-Po Yuan, Alexander T.H. Wu, Yan-Shen Shan, Szu-Yuan Wu. Fucoidan Inhibits Radiation-Induced Pneumonitis and Lung Fibrosis by Reducing Inflammatory Cytokine Expression in Lung Tissues. Mar Drugs. 2018, Vol. 16, № 10, P. 392. https://doi.org/:10.3390/md16100392
  49. Kim A., Jin Bing S., Cho J., Ahn G., Lee J.H., Jeon Y.J., Lee BG, Jee Y. Protective effect of Hizikia fusiforme on radiationinduced damage in splenocytes. Korean J Vet Res, 2015, Vol. 55, pp. 21–30.
  50. Kim J., Moon C., Kim H., Jeong J., Lee J., Kim J., Hyun J.W., Park J.W., Moon M.Y., Lee N.H., Kim S.H., Jee Y., Shin T. The radioprotective effects of the hexane and ethyl acetate extracts of Callophyllis japonica in mice that undergo whole body irradiation. J Vet Sci, 2008, Vol. 9, pp. 281–284.
  51. Shin T., Kim H.C., Kim J.T., Ahn M.J., Moon C.J., Hyun J.W., Jee Y.H., Lee N.H., Park J.W. A comparative study of radioprotection with Callophyllis japonica extract and amifostine against lethal whole body gamma irradiation in mice. Orient Pharm Exp Med, 2010, Vol. 10, pp. 1–6.
  52. Mazo V.K., Gmoshinskii I.V., Sokolova A.G., Zorin S.N., Danilina L.L., Litvinova A.V., Radchenko S.N. Effect of biologically active food additives containing autolysate of baker’s yeast and spirulina on intestinal permeability in an experiment. Voprosy Pitaniya, 1999, Vol. 68, pp. 17–19.
  53. Gomes T., Xie L., Brede D., Lind O.C., Solhaug K.A., Salbu B., Tollefsen K.E. (2017) Sensitivity of the green algae Chlamydomonas reinhardtii to gamma radiation: photosynthetic performanceand ROS formation. Aquat Toxicol, 2017, Vol. 183, pp. 1–10.
  54. Kang N., Lee J-H., Lee W., Ko J-Y., Kim E-A., Kim J-S., Heu M-S., Kim GH., Jeon Y-J. 2015. Gallic acid isolated from Spirogyra sp. improves cardiovascular disease through a vasorelaxant and antihypertensive effect. Environ Toxicol Pharmacol., 2015, Vol. 39, pp. 764–772.
  55. Martone P.T., Estevez J.M., Lu F., Ruel K., Denny M.W., Somerville C., Ralph J. Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture. Curr Biol., 2009, Vol. 19, pp. 169–175.
  56. Li Y-X., Wijesekara I., Li Y., Kim S-K. Phlorotannins as bioactive agents from brown algae. Process Biochem, 2011, Vol. 46, pp. 2219–2224.
  57. Eom S.H., Moon S-Y., Lee D-S., Kim H-J., Park K., Lee E-W., Kim T.H., Chung Y-H., Lee M-S., Kim Y-M. In vitro antiviral activity of dieckol and phlorofucofuroeckol-A isolated from edible brown alga Eisenia bicyclis against murine norovirus. Algae, 2015, Vol. 30, pp. 241–246.
  58. Lee S-H., Kang S-M., Sok C.H., Hong J.T., Oh J-Y., Jeon Y-J. Cellular activities and docking studies of eckol isolated from Ecklonia cava (Laminariales, Phaeophyceae) as potential tyrosinase inhibitor. Algae, 2015, Vol. 30, pp. 163–170.
  59. Shin T., Ahn M., Hyun JW., Kim SH., Moon C. Antioxidant marine algae phlorotannins and radioprotection: a review of experimental evidence. Acta Histochem., 2014, Vol. 116, pp. 669–674.
  60. Lee J-H., Ko J-Y., Oh J-Y., Kim E-A., Kim C-Y., Jeon Y-J. Evaluation of phlorofucofuroeckol-A isolated from Ecklonia cava (Phaeophyta) on anti-lipid peroxidation in vitro and in vivo. Algae, 2015a, Vol. 30, pp. 313–323. doi: 10.4490/algae.2015.30.4.313
  61. Park E., Ahn G.-N., Lee N.H., Kim J.M., Yun J.S., Hyun J.W., Jeon Y.-J., Wie M.B., Lee Y.J., Park J.W., Jee Y. Radioprotective properties of eckol against ionizing radiation in mice. FEBS Lett., 2008, Vol. 582, pp. 925–930.
  62. Heo S-J., Jeon Y-J. Protective effect of fucoxanthin isolated from Sargassum siliquastrum on UV-B induced cell damage. J Photochem Photobiol B Biol, 2009, Vol. 95, pp. 101–107.
  63. Venkatachalam S.R. Chattopadhyay S. Natural radioprotective agents: an overview. Curr Org Chem., 2005, № 9, pp. 389–404.
  64. Fernando I.P.S., Kim M., Son K-T., Jeong Y., Jeon Y-J. Antioxidant activity of marine algal polyphenolic compounds: a mechanistic approach. J Med Food, 2016, Vol. 19, pp. 615–628.
  65. Salgado L.T., Tomazetto R., Cinelli L.P., Farina M., Amado Filho G.M. The influence of brown algae alginates on phenolic compounds capability of ultraviolet radiation absorption in vitro. Braz J Oceanogr., 2007, Vol. 55, pp. 145–154.
  66. Камская В.Е. Хитозан: структура, свойства и использование // Научное обозрение. Биологические науки. 2016. № 6. С. 36–42
  67. Гринь С.А., Албулов А.И., Фролова М.А., Самуйленко А.Я., Гринь А.В., Ковалева Э.И., Мельник Н.В., Мельник Р.Н., Варламов В.П., Матвеева И.Н., Хаконов А.А., Шабунин С.В., Беро И.Л., Киш Л.К. Перспективы использования хитозана в качестве радиопротектора // Вестник российской сельскохозяйственной науки. 2019. № 6. С. 54–57
  68. Кострюкова Н.К., Карпин В.А. Биологические эффекты малых доз ионизирующего излучения // Сиб. мед. журн. (Иркутск). 2005. Т. 50, № 1. С. 17–22.
  69. Лаки Т.Д. Физиологические преимущества низких уровней ионизирующего излучения // Физ. здоровья. 1982. Вып. 43, № 6. С. 771–789.
  70. Маргулис У.Я. Беспороговая и пороговая концепции радиационных эффектов. Ядерная энциклопедия. М., 1996. С. 384–386
  71. Грейб Р. Эффект Петко: влияние малых доз радиации на людей, животных и деревья. М., 1994. 263 с.
  72. Грейб Р. Действие малых доз ионизирующего излучения: Эффект Петко. Ядерная энциклопедия. М. 1996. С. 387–394.
  73. Сложеникина Л.В., Макар В.Р., Коломийцева И.К. Катехоламинергическая система в гипоталамусе при хроническом гамма-облучении крыс // Радиац. биология. Радиоэкология. 1997. Т. 37, № 1. С. 25–29
  74. Гончаренко Е.Н., Антонова С.В., Ахалая М.Я., Кудряшов Ю.Б. Влияние малых доз ионизирующей радиации на уровень содержания катехоламинов и кортикостероидов в надпочечниках мышей // Радиац. биология. Радиоэкология. 2000. Т. 40, № 2. С. 160–161
  75. Потапова В.В., Федянина Л.Н., Маслов В.П. Биологически активные добавки из морских гидробионтов Тихого океана – средства массовой профилактики последствий облучения человека // Здоровье. Медицинская экология. Наука. 2002. T. 8–9, № 4–5. С. 54.
  76. Гончарова Р.И., Смолич И.И. Генетическая эффективность малых доз ионизирующей радиации при хроническом облучении мелких млекопитающих // Радиац. биология. Радиоэкология, 2002, Т. 42, № 6, С. 654–660
  77. Jiao G., Yu G., Zhang J., Ewart H.S. Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar Drugs, 2011, No. 9, pp. 96–223. doi: 10.3390/md9020196
  78. Pomin V.H. Marine non-glycosaminoglycan sulfated glycans as potential pharmaceuticals. Pharmaceuticals. 2015, No. 8, pp. 848–864. doi: 10.3390/ph8040848
  79. Jesus Raposo M.F., Morais A.M., Morais R.M. Marine polysaccharides from algae with potential biomedical applications. Mar Drugs, 2015, Vol. 13, № 5, pp. 2967–3028. doi: 10.3390/md13052967
  80. Cumashi A., Ushakova N.A., Preobrazhenskaya M.E., D’Incecco A., Piccoli A., Totani L., et al. A comparative study of anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology, 2007, Vol. 17, pp. 541–552. doi: 10.1093/glycob/cwm014
  81. Подкорытова А.В., Рощина А.Н., Евсеева Н.В., Усов А.И., Головин Г.Ю., Попов А.М. Бурые водоросли порядков Laminariales и Fucales Сахалино-Курильского региона: запасы, добыча, использование. Труды ВНИРО. 2020. Т. 181. С. 235–256
  82. Гурулева О.Н., Аминина Н.М. Исследование содержания фукоидана в бурых водорослях Дальневосточного региона // Известия ТИНРО. 2013. Т. 172. С. 265–273

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Polovov S.F., Ivanushko L.A., Smolina T.P.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies